Форма обучения:
дистанционная
Стоимость самостоятельного обучения:
бесплатно
Стоимость обучения с персональным тьютором:
500 руб. [?]
Доступ:
свободный
Документ об окончании:
 
Уровень:
Профессионал
Длительность:
22:41:00
Студентов:
937
Выпускников:
123
Качество курса:
4.40 | 4.36
В курсе лекций рассматриваются основные понятия и методы вычислительной математики. Он посвящен решению систем уравнений в частных производных и уравнений математической физики.
В качестве примеров рассматриваются численные методы решения задач газовой динамики. Дается представление о современных методах решения уравнений математической физики, как конечно-разностных методов, так и вариационных и проекционных методах.
Специальности: Математик
 

План занятий

Занятие
Заголовок <<
Дата изучения
Лекция 1
2 часа 42 минуты
Исследование разностных схем для эволюционных уравнений на устойчивость и сходимость
В лекции рассматриваются методы исследования устойчивости разностных схем для линейных эволюционных уравнений в частных производных (гиперболического и параболического типов) Обсуждается применение спектрального признака устойчивости, энергетического признака, условия Куранта, Фридрихса и Леви для гиперболических уравнений. Формулируется и доказывается теорема (В. С. Рябенького - П. Лакса) о связи аппроксимации, устойчивости и сходимости для линейных разностных схем
-
Лекция 2
1 час 31 минута
Численное решение дифференциальных уравнений в частных производных параболического типа на примере уравнения теплопроводности
В лекции рассматриваются разностные схемы для решения линейного уравнения теплопроводности, нелинейного уравнения теплопроводности. Приводится пример интегро - интерполяционного метода для построения разностных схем. Отдельно рассматриваются экономичные схемы решения многомерных задач для уравнения теплопроводности — переменных направлений, дробных шагов, Дугласа - Ганна
-
Лекция 3
3 часа 16 минут
Численные методы решения уравнений в частных производных гиперболического типа (на примере уравнения переноса)
В лекции дается понятие о простейших разностных схемах для решения линейного уравнения переноса. Приводится вид некоторых часто употребляемых схем. Обсуждаются способы конструирования гибридных разностных схем. Обсуждаются вопросы обобщения на квазилинейный случай. Дается первоначальное представление о способах регуляризации решений с большими градиентами. Вводится понятие схем с уменьшением полной вариации (TVD). Рассматриваются основные идеи метода конструирования разностных схем в пространстве неопределенных коэффициентов
-
Лекция 5
1 час 50 минут
Численное решение уравнений в частных производных гиперболического типа с большими градиентами решений
Лекция продолжает тему предыдущей лекции и также является необязательной. В ней рассматриваются некоторые идеи, нашедшие свое применение для построения разностных схем решения задач механики сплошной среды. Рассматриваются способы построения гибридных схем для задач с большими градиентами решения, описываются идеи TVD - и ENO - схем. Вкратце описываются разностные схемы, построенные на основе решения задачи о распаде произвольного газодинамического разрыва (схемы С.К. Годунова)
-
Лекция 6
2 часа 44 минуты
Численное решение уравнений в частных производных эллиптического типа на примере уравнений Лапласа и Пуассона
В лекции разбираются постановка простейшей разностной задачи для уравнений Лапласа и Пуассона в прямоугольной области (схема "крест"). Дается обзор методов решения сеточных уравнений. Вкратце описываются идеи современных методов решения эллиптических уравнений в области произвольной геометрии — многосеточный метод и метод построения мажорантных разностных схем в пространстве неопределенных коэффициентов
-
Лекция 7
1 час 20 минут
Понятие о методах конечных элементов
Лекция дает первое представление о классе методов конечных элементов. Приводятся вариационная и проекционная постановки задачи. Рассматривается применение МКЭ к стационарным и нестационарным задачам. Вкратце обсуждаются вопросы устойчивости методов конечных элементов при решении нестационарных задач. Рассматривается общая схема применения методов конечных элементов к решению многомерных задач математической физики
-
Лекция 9
53 минуты
Применение вариационных принципов для построения разностных схем
В необязательной лекции приводятся примеры использования вариационных принципов Лагранжа и Гамильтона для построения разностных схем на основе вариации дискретного аналога лагранжиана (гамильтониана) системы. В Приложении на примере решения конкретной задачи по проектированию установки рассмотрены основные схемы распараллеливания численных методов
-
1 час 40 минут
-
Николай Щербаков
Николай Щербаков
Россия, Москва
Олег Корсак
Олег Корсак
Латвия, Рига