Опубликован: 06.07.2010 | Уровень: для всех | Доступ: платный
Практическая работа 6:

Непрерывность, точки разрыва. Решение уравнений и неравенств

< Практическая работа 1 || Практическая работа 6
Аннотация: Доказывается непрерывность функций, используя различные определения. Исследуются функции на непрерывность, определяются точки разрыва и их характер. Решаются задачи о нахождении корней уравнения с помощью теоремы Больцано-Коши. Методом интервалов решаются неравенства.
Вы можете скачать: презентацию

Смотреть лекцию на: ИНТУИТ | youtube.com

Если проблемы с видео, нажмите выше ссылку youtube

Get Adobe Flash Player
< Практическая работа 1 || Практическая работа 6
Кирилл Цыганов
Кирилл Цыганов

6 лекция 22 минута, доказать, что ф-я sin(1/x) не имеет предела в точке 0, мы рассматриваем 4 абсолютно разных последовательности, которые сходятся к разным пределам, и каким-то волшебным образом делаем из этого вывод, что 5я последовательность, которая тоже никак с ними не связана, из-за этого не имеет предела. Это КАК? Где ЛОГИКА?

Александр Ефремов
Александр Ефремов

Непонятно - допустим есть А - предел с некоторой окрестностью, в нем бесконечное число элементов потому что это предел, вне предела находится конечное число элементов, следовательно в В тоже конечное число элементов поэтому В не предел. Это как? Получается что В не предел потому что А уже предел или как? А почему бы им обоим не стать пределами к примеру? Вопрос относится к 10 минуте видео

алексей оглы
алексей оглы
Россия
рафич Салахиев
рафич Салахиев
Россия