Кабардино-Балкарский государственный университет
Опубликован: 02.03.2006 | Доступ: свободный | Студентов: 6216 / 1741 | Оценка: 4.28 / 3.98 | Длительность: 15:25:00
ISBN: 978-5-9556-0108-3
Лекция 13:

Основы принятия решений и ситуационного моделирования

< Лекция 12 || Лекция 13: 1234 || Лекция 14 >
Аннотация: Рассматриваются основные понятия теории принятия решений и ситуационного моделирования систем, примеры. Цель лекции: содержательное введение в основы принятия решений и ситуационное моделирование систем.
Ключевые слова: принятие решения, деятельность, ситуационный анализ, функция, ЛПР, знание, множества, затраты, принятие, решение, стоимость, прибыль, полезность, надежность, полезностью решения, альтернативные, значение, имитационные модели, теоретический метод, процедура принятия решения, статистическая гипотеза, мера, модель задач, критерий эффективности, алгоритм, динамическое программирование, теория игр, сетевой график, критерий оптимальности, система принятия решений, анализ проблемы и среды, адаптация, разработка, анализ и интерпретация результатов, математическое программирование, отношение предпочтения, ранжирование, ситуационное моделирование, банковская система, операции, анализ, процентная ставка, денежные потоки, уставный капитал, доходность, ликвидность, вывод, величина риска, динамическая модель, конвертируемость, дебиторы, присоединение, вероятность, вектор, условная вероятность, активы, дебиторская задолженность, формула Шеннона, количество информации, класс, рейтинг, байесовский риск, адекватность модели, поток, эффективный механизм, стратегия поведения, decision support system, место, мультимедиа, поддержка, проблемный мониторинг, планово-аналитический режим, чрезвычайный режим, компьютер

Принятие решения и целеполагающая ресурсоориентированная деятельность человека в социальной, экономической, политической, идеологической, военной сферах тесно связаны. В них крайне нежелательны ошибки, которые могут привести к пагубным последствиям. Но из-за ограниченных информационных возможностей человека ошибки всегда возможны. Поэтому есть настоятельная необходимость применения научного подхода к обоснованию и принятию решений.

Принятие решений, наряду с прогнозированием, планированием, ситуационным анализом обстановки, исполнением решений, контролем и учетом является функцией управления. Все функции управления направлены так или иначе на формирование или реализацию решений, и любую функцию управления технологически можно представить в виде последовательности каких-либо связанных общей целью решений.

При прогнозировании и планировании принимаются решения, связанные с выбором методов и средств, организацией работы, оценкой достоверности информации, выбором наиболее достоверного варианта прогноза и наилучшего варианта плана. Таким образом, функция принятия решений является с методологической и технологической точек зрения более общей, чем другие функции управления. Для лица, принимающего решение ( ЛПР ), принятие решений является основной задачей, которую он обязан исполнять в процессе управления. Поэтому знание методов, технологий и средств решений этой задачи является необходимым элементом квалификации руководителя, базой для дальнейшего управления.

Конечным результатом любой задачи принятия решений становится решение, конструктивное предписание к действию. Решение является одним из видов мыслительной деятельности и имеет следующие признаки: имеется выбор из множества возможностей; выбор ориентирован на сознательное достижение целей; выбор основан на сформировавшейся установке к действию. Основной характеристикой решения является его эффективность, т.е. степень, темп достижения целей и затраты ресурсов для принятия и реализации решения. Решение тем эффективнее, чем больше степень достижения целей и меньше стоимость затрат.

Принятие решения - это выбор одного из множества рассматриваемых допустимых вариантов. Обычно их число конечно, а каждый вариант выбора определяет некоторый результат (экономический эффект, прибыль, выигрыш, полезность, надежность и т.д.), допускающий количественную оценку. Такой результат обычно называется полезностью решения. Таким образом, ищется вариант с наибольшим значением полезности решения. Возможен и подход с минимизацией противоположной оценки, например, отрицательной величины полезности. Часто на практике встречается ситуация, когда каждому варианту решения соответствует единственный результат (детерминированность выбора решения), хотя возможны и другие случаи, например, когда каждому варианту i и условию j, характеризующему полезность, соответствует результат решения xij. Таким образом, можно говорить о матрице решений ||xij||, i=1,2,:m ; j=1,2,:,m. Чтобы оценить решение, необходимо уметь оценивать все его последствия. Существуют различные подходы для такой оценки. Например, если решения альтернативные, то можно последствия каждого из них характеризовать суммой его наибольшего и наименьшего результатов, максимумом из возможных таких сумм, максимумом из максимумов по всем вариантам (оптимистическая позиция выбора), максимумом из среднего арифметического (нейтральная позиция выбора), максимумом из минимума (пессимистическая позиция) и другие.

Классические модели принятия решений, как правило, являются оптимизационными, ставящими цель максимизировать выгоду и на основе этих моделей получить практическую прибыль. Так как теоретиков больше интересует первая сторона, а практиков - вторая, то при разработке и использовании таких моделей необходимо их тесное сотрудничество. Практические рекомендации (решения) могут быть получены, если при построении модели принятия решений придать большее значение учету существенных структурных элементов моделируемой системы, т.е. разработке имитационной модели принятия решений, с привлечением экспериментальных, полуэкспериментальных и теоретических методов. Кроме классических, оптимизационных процедур принятия решений существуют и ряд базовых неклассических (неоклассических) процедур, технологий принятия решений, некоторые из которых мы рассмотрим.

Классификация задач принятия решений проводится по различным признакам. Наиболее существенными являются: степень определенности информации; использование эксперимента для получения информации; количество лиц, принимающих решения; содержание решений; направленность решений.

На процесс принятия решения часто воздействуют различные случайные (стохастические) параметры, усложняющие процедуру. Недостаток информации об их распределении (сложность их измерения) приводит к необходимости принятия каких-то гипотез как об области их изменения, так и о характере их распределения (о функции распределения вероятностей). Правильность используемых гипотез необходимо проверять с помощью методов оценки статистических гипотез. При отсутствии достаточной информации для такой процедуры приходится привлекать большое число типов распределения. Проблемы принятия решений с недетерминированными параметрами называют проблемами принятия решений в условиях недостатка информации. Чем меньше информации у нас, тем больше может оказаться различие между ожидаемым и действительным результатами принимаемых решений в целом. Мера влияния информации (параметров) на результат решения называется релевантностью. Особо важно в социально-экономической сфере принятие решения при наличии рисков (неплатежей, невозвратов кредитов, ухудшения условий жизни и т.д.).

Формализуемые решения принимаются на основе соответствующих математических методов (алгоритмов). Математическая модель задачи оптимизации формализуемого решения включает следующие элементы:

  1. заданную оптимизируемую целевую функцию (критерий управляемости): Ф=F(x1,x2,:,xn), где xj (j=1,2,:,n) - параметры, учитываемые при принятии решения (отражающие ресурсы принятия решений );
  2. условия, отражающие ограниченность ресурсов и действий ЛПР при принятии решений: gi(xj)<ai, ki (xj)=bi ; cj<xj<di, i=1,2,:,m; j=1,2,:, n.

Непременным требованием для решения задачи оптимизации является условие n>m.

В зависимости от критерия эффективности, стратегий и факторов управления выбирается тот или иной метод (алгоритм) оптимизации.

Основными являются следующие классы методов:

  1. методы линейного и динамического программирования ( принятия решения об оптимальном распределении ресурсов);
  2. методы теории массового обслуживания ( принятие решения в системе со случайным характером поступления и обслуживания заявок на ресурсы);
  3. методы имитационного моделирования ( принятие решения путем проигрывания различных ситуаций, анализа откликов системы на различные наборы задаваемых ресурсов);
  4. методы теории игр ( принятие решений с помощью определения стратегии в тех или иных состязательных задачах);
  5. методы теории расписаний ( принятие решений с помощью разработки календарных расписаний выполнения работ и использования ресурсов);
  6. методы сетевого планирования и управления ( принятие решений с помощью оценки и перераспределения ресурсов при выполнении проектов, изображаемых сетевыми графиками);
  7. методы многокритериальной (векторной) оптимизации ( принятие решений при условии существования многих критериев оптимальности решения)

и другие методы.

< Лекция 12 || Лекция 13: 1234 || Лекция 14 >
Эрнесто Жолондиевский
Эрнесто Жолондиевский

Добрый день! Я ранее заканчивал этот курс бесплатно. Мне пришло письмо что я могу по этому курсу получить удостоверение о повышении квалификации. Каким образом это можно сделать не совсем понятны шаги кроме как вновь записаться на этот курс. С уважением Жолондиевский Эрнесто Робертович.

Илья Дружинин
Илья Дружинин
Школа 179, 2001
Валерия Черезова
Валерия Черезова
Россия, г. Тверь