Кабардино-Балкарский государственный университет
Опубликован: 02.03.2006 | Доступ: свободный | Студентов: 6052 / 1677 | Оценка: 4.28 / 3.98 | Длительность: 15:25:00
ISBN: 978-5-9556-0108-3
Лекция 11:

Математическое и компьютерное моделирование

< Лекция 10 || Лекция 11: 1234 || Лекция 12 >

Этап 4. Проведение вычислительных экспериментов

Эксперимент 1. Поток инвестиций - постоянный и в каждый момент времени равен 10000. В начальный момент капитал - 1000000 руб. Коэффициент амортизации - 0,0025. Найти величину основных фондов через 20 суток, если лаг равен 5 суток.

Эксперимент 2. Основные фонды в момент времени t=0 была равны 5000. Через какое время общая их сумма превысит 120000 руб., если поток инвестиций постоянный и равен 200, а m=0,02, T=3?

Эксперимент 3. Какую стратегию инвестиций лучше использовать, если величина инвестиций постоянная, в начальный момент капитал равен 100000, величина амортизации постоянная?

Этап 5. Модификация (развитие) модели

Модификация 1. Коэффициент амортизации можно взять в форме m=r-sx(t), где r - коэфициент обновления фондов, s - коэффициент устаревания фондов, причем 0<=r, s<=1. При этом модель примет вид

x`(t)=y(t-T)-rx(t)+sx2(t),     x(0)=х0

Этой непрерывной, дифференциальной, динамической модели можно поставить в соответствие простую дискретную модель:

хi+1i +yj - rхi+sxi 2 ,
x0=с,   i=0, 1, 2, :, n,   0<j<n,

где n - предельное значение момента времени при моделировании. Поставить цели и исследовать непрерывную и дискретную модели.

Модификация 2. Одна из моделей математической экономики задается уравнением: dz/dt=((1-c)*z(t)+k(t-w)+a)l, где z(t ) - функция, которая характеризует выпуск продукции, k - коэффициент капиталовложений, a - независимые расходы производства, l - скорость реакции выпуска на капиталовложения, c - постоянная спроса, w - запаздывание (лаг). Поставить цели и исследовать непрерывную и дискретную модели.

Модификация 3. Для модели динамики фондов с переменным законом потока инвестиций: а) построить гипотезы, модель и алгоритм для моделирования; б) сформулировать планы вычислительных экспериментов по этой модели; в) реализовать алгоритм и планы экспериментов на ЭВМ.

Математическое моделирование только в последнее время становится на технологическую основу, в связи с этим необходимо отметить особую роль обычно технологичного имитационного моделирования, которое позволяет нам проигрывать реальные ситуации, происходящие в системах, на их моделях. Компьютерное моделирование (получение, накопление, переработка, хранение, использование, актуализация знаний с помощью ЭВМ), в отличие от математического, используется сравнительно недавно, хотя эти технологии моделирования тесно связаны. Компьютерное моделирование, как правило, применяется тогда, когда не удается построить математической аналитической модели или же такая модель трудоемка для исследования.

Пример. Компьютерной (физической) моделью может служить простая модель броуновского движения, получаемая генерацией компьютером нового случайного положения точки на экране и траектории ее движения; при этом отметим, что сам "датчик случайных чисел компьютера (или языка)" - это компьютерная модель, соответствующая математической модели распределения случайной величины (обычно нормального распределения) или так называемой функции распределения. Это распределение - псевдослучайное, получаемое по вполне детерминированному алгоритму.

Вопросы для самоконтроля

  1. Что такое математическая модель?
  2. Что такое линеаризация, идентификация, оценка адекватности и чувствительности модели?
  3. Что такое вычислительный или компьютерный эксперимент? В чем особенности компьютерного моделирования по сравнению с математическим моделированием?

Задачи и упражнения

По приведенным ниже моделям: выписать соответствующую дискретную модель (если приведена непрерывная модель) или непрерывную модель (если приведена дискретная модель); исследовать модель в соответствии с поставленной целью (получить решение, проверить его единственность, устойчивость, наличие стационарного решения); составить алгоритм моделирования; модифицировать модель или разработать на ее основе новую; сформулировать несколько реальных систем, описываемых моделью; линеаризовать и идентифицировать модель (предложить подходы); сформулировать несколько возможных сфер применения моделей и результатов, полученных при ее исследовании; определить тип, входное и выходное множество модели.

  1. Концентрация вещества, поступающего в реку со стоком, изменяется в результате действия рассеивания, адвекции, реакции. Концентрация хi вещества в реке зависит только от расстояния i, i=0,1,:, n по течению реки и определяется по формуле: ab(xi+1-2xi+xi+1)-c(xi-xi-1)-daxi=0, где а - площадь поперечного сечения реки, b - коэффициент рассеивания по течению реки, с - полный объемный расход реки, d - скорость разложения органического вещества. Эти величины a, b, c, d считаются пока постоянными. Общий поток вещества определяется: N=cxi-ab(xi+1-xi). Цель моделирования - прогноз загрязнения реки (для каждого i ).
  2. Пусть x(t) - величина ресурса (вещественного, энергетического или информационного), а(х) - скорость его возобновления, у(t) - величина потребителя (плотность), b=b(x,y) - скорость потребления ресурса потребителем, причем эксперименты показывают, что часто b=b(x). При этих условиях модель баланса ресурса имеет вид: x'(t)=a-by(t), x(0)=m, y'(t)=cby(t)-dy(t), y(0)=n, где с - к.п.д. переработки ресурса для нужд потребителя (например, в биомассу потребителя), d - коэффициент естественной убыли потребителя. Функция b=b(x), обладающая свойствами: а) b(x) - монотонна, т.е. растет или убывает, b'(x)>0 или b'(x)<0; б) b(0)=0 (в начальный момент трофическая функция равна нулю); в) b(x) - ограничена (т.е. скорость потребления ресурса ограничена) называется трофической функцией потребителя. Если а=0 - ресурс не возобновляем, иначе - возобновляем с постоянной скоростью а. Рассмотреть социально-экономическую интерпретацию одной модели. Цель моделирования: а) прогноз потребления; б) прогноз переработки; в) идентификация к.п.д. при различных аналогах трофической функции.
  3. Пусть рынок некоторых товаров определен в виде клеточного поля. Некоторые клетки поля вначале считаются занятыми (продавцами). Ближайшие к занятым клеткам свободные (граничащие) клетки образуют периметр кластера продавцов (кластер может состоять также только из одного продавца). Ячейки периметра с вероятностью (с частотой) р занимаются новыми продавцами до тех пор, пока кластер не достигнет границ поля (экономической ниши товара) или не пройдет некоторое заданное время моделирования (время снижения потребительского интереса к товарам). Цель моделирования: а) построение клеточно-автоматной, фрактальной картины рынка через некоторое время; б) построение новых законов занятия ниши продавцами товаров и моделирование.

Темы научных исследований и рефератов, интернет-листов

  1. Математическое моделирование: история, личности, будущее.
  2. Компьютерное моделирование и его особенности.
  3. Роль математического моделирования в современном мире.
< Лекция 10 || Лекция 11: 1234 || Лекция 12 >
Эрнесто Жолондиевский
Эрнесто Жолондиевский

Добрый день! Я ранее заканчивал этот курс бесплатно. Мне пришло письмо что я могу по этому курсу получить удостоверение о повышении квалификации. Каким образом это можно сделать не совсем понятны шаги кроме как вновь записаться на этот курс. С уважением Жолондиевский Эрнесто Робертович.

Андрей Прокопов
Андрей Прокопов
Россия, Москва, МТУСИ, 1996
Максим Виноградов
Максим Виноградов
Россия, Москва