Опубликован: 17.10.2005 | Доступ: свободный | Студентов: 7822 / 277 | Оценка: 4.38 / 4.10 | Длительность: 41:14:00
ISBN: 978-5-7502-0255-3
Специальности: Программист
Лекция 3:

Модульность

Слабая связность интерфейсов

Правило Слабой связности интерфейсов относится к размеру передаваемой информации, а не к числу связей:

Если два модуля общаются между собой, то они должны обмениваться как можно меньшим объемом информации.

Инженер-электрик сказал бы, что каналы связи между модулями должны иметь ограниченную полосу пропускания:

Канал связи между модулями

Рис. 3.8. Канал связи между модулями

Требование Слабой связности интерфейсов следует, в частности, из критериев непрерывности и защищенности.

Особо примечательным контрпримером является конструкция из языка Fortran, знакомая некоторым читателям как "общий блок для мусора" ("garbage common block"). Общим блоком в Fortran'е является директива вида:

COMMON /общее_имя/ переменная1 : переменнаяn.

Переменные, перечисленные в блоке, доступны во всех модулях, содержащих директиву COMMON с тем же общим_именем. Нередко встречаются программы на Fortran'е, в которых каждый модуль содержит одну и ту же огромную директиву COMMON с перечислением всех существенных переменных и массивов, так что каждый модуль может непосредственно обращаться к любым данным программы.

Возникающие здесь затруднения состоят в том, что любой из модулей может неправильно использовать общие данные, а модули тесно связаны между собой; поэтому проблемы реализации непрерывности (распространение изменений) и защищенности (распространение ошибок) являются чрезвычайно трудно разрешимыми. Тем не менее, эта освященная годами техника все еще остается любимой многими программистами, хотя и ведет к длительным ночным отладочным бдениям.

Разработчики, пользующиеся языками с вложенными структурами, испытывают такие же затруднения. При наличии блочной структуры, введенной в языке Algol и поддерживаемой, в более ограниченной форме, в языке Pascal, можно "вкладывать" блоки, содержащиеся внутри пар begin ... end, внутрь других блоков. К тому же каждый блок может вводить свои собственные переменные, которые имеют смысл лишь в синтаксическом контексте (syntactic scope) этого блока. Например:

local -- Начало блока B1
      x, y: INTEGER
do
      ... Команды блока B1 ...
      local -- Начало блока B2
            z: BOOLEAN
      do
            ... Команды блока B2 ...
      end -- Конец блока B2
      local -- Начало блока B3
            y, z: INTEGER
      do
            ... Команды блока B3 ...
      end -- Конец блока B3
      ... Команды блока B1 (продолжение) ...
end -- Конец блока B1

Переменная x доступна для всех команд в этом фрагменте программы, в то время как области действия двух переменных с именем z (одна типа BOOLEAN, другая типа INTEGER) ограничены блоками B2 и B3 соответственно. Подобно x, переменная y объявлена на уровне блока B1, но ее область действия не включает блока B3, где другая переменная с тем же именем и тем же типом локально имеет приоритет над самой ближней внешней переменной y. В Pascal'е этот вид блочной структуры существует лишь для блоков, связанных с подпрограммами (процедурами и функциями)4Тело блока это последовательность команд. Примененный здесь синтаксис совместим с нотацией, используемой в последующих лекциях и несколько отличается от синтаксиса языка Algol. "--" означает начало комментария.

При наличии блочной структуры, эквивалентом "мусорного" общего блока Fortran'а является объявление всех переменных на самом верхнем (глобальном) уровне. В языках на основе языка С таким эквивалентом является объявление всех переменных внешними (external). (О кластерах см. лекции 10 курса "Основы объектно-ориентированного проектирования". Альтернатива вложенности рассматривается в разделе "Архитектурная роль выборочного экспорта (selective exports)".)

Использование блочной структуры является оригинальной идеей, но это может приводить к нарушению правила Слабой связности Интерфейсов. По этой причине мы будем воздерживаться от применения ее в объектно-ориентированной нотации, развиваемой далее в этом курсе. Язык Simula - объектно-ориентированная производная от Algol'а - поддерживает блочную структуру классов. Опыт работы с ним показал, что способность создавать вложенные классы является излишней при наличии некоторых возможностей, обеспечиваемых механизмом наследования. Структура объектно-ориентированного программного обеспечения содержит три уровня: система является набором кластеров; кластер является набором классов; класс является набором компонент (атрибутов (attributes) и методов (routines)). Кластеры скорее организационное средство, чем лингвистическая конструкция, могут быть вложенными, что позволяет руководителю проекта структурировать большую систему на любое необходимое число уровней; но классы, как и компоненты, имеют одноуровневую плоскую (flat) структуру, поскольку вложенность на любом из этих уровней приведет к излишнему усложнению.

Александр Шалухо
Александр Шалухо
Анатолий Садков
Анатолий Садков

При заказе pdf документа с сертификатом будет отправлен только сертификат или что-то ещё?

Айдар Гумеров
Айдар Гумеров
Россия, Уфа, УГАТУ, 2015