Опубликован: 26.05.2010 | Доступ: свободный | Студентов: 1593 / 255 | Оценка: 4.42 / 4.25 | Длительность: 56:51:00
ISBN: 978-5-9963-0124-9
Специальности: Разработчик аппаратуры
Лекция 3:

Механические сенсоры перемещения. Принципы работы глобальной системы ориентирования и сенсоры GPS

3.4. Сенсоры линейного перемещения

Известным видом механических чувствительных элементов, в которых первичный сигнал появляется в форме линейного перемещения, являются поршни. Принцип действия поршня показан на рис. 3.5, а. На одной стороне подвижного поршня в герметически закрытой части цилиндра находится газ, а с другой стороны – среда, в которой измеряется давление. Это может быть тоже газ или жидкость. Когда измеряемое давление возрастает, подвижный поршень перемещается, сжимая газ в закрытой части цилиндра до тех пор, пока его давление не уравняется с внешним. Когда измеряемое давление уменьшается, то поршень перемещается в противоположном направлении до достижения нового состояния равновесия. А движение поршня приводит в действие механизм отсчета давления. На рис. 3.5, б показан один из поршневых манометров, в котором движение поршня механически превращается в поворот стрелки. Связь поршня с узлом отсчета не обязательно должна быть механической, а может быть, например, магнитной или оптической. На рис. 3.5, в показан пример другого поршневого сенсора, предназначенного для контроля и регулирования потока жидкости. В нем подвижный поршень с одной стороны контактирует с жидкостью, поток которой измеряется, а с другой стороны прикреплен к пружине. Если жидкость течет, то по известному закону Бернулли давление в ней уменьшается, что вынуждает поршень несколько смещаться в сторону жидкости. Смещение это тем значительней, чем быстрее поток жидкости. Когда поток жидкости уменьшается, пружина оттягивает поршень назад. Линейные перемещения поршня фиксируются в данном случае с помощью небольшого магнита и датчиков Холла. Сенсор нечувствителен к загрязнениям и к вязкости жидкости. Он может измерять поток жидкости (воды, масла, керосина и т.п.) в диапазоне от 0,4 л/мин до 60 л/мин с точностью до 3%. Небольшая электронная схема, герметически отделенная от гидравлического узла, обеспечивает быструю реакцию на изменения скорости потока. Имеется возможность выдачи аналогового сигнала и сигналов выхода измеренных значений потока за установленные пользователем пределы, отображения величины потока на светодиодном индикаторе.

Поршневые сенсоры

Рис. 3.5. Поршневые сенсоры

Следующим известным механическим чувствительным элементом с линейным перемещением является поплавок. Это один из древнейших видов сенсоров – такой же древний, как ловля рыбы на удочку, когда поплавок используют в качестве сенсора клёва рыбы. В датчиках уровня жидкости используют тот факт, что поплавок перемещается вместе с перемещением поверхности жидкости. А его перемещения могут быть разными способами преобразованы в электрические, визуальные или другие виды сигналов. На рис. 3.6, а например, показан поплавок 1, жестко связанный с подвижной трубкой. При поднятии уровня жидкости, поплавок всплывает, и вместе с ним поднимается трубка. Ее верхний конец виден сквозь прозрачное окошко 2 со шкалой, установленное над резервуаром. В сенсоре, показанном на рис. 3.6, б, поплавок 1 может свободно перемещаться вдоль трубки 3, отслеживая уровень жидкости в резервуаре. Принцип преобразования линейного перемещения поплавка в электрический сигнал раскрывается на рис. 3.6, в, г. Внутри трубки 3 размещена плата с резисторами, последовательно включенными в электрическую цепь, и микропереключателями, которые приводятся в действие магнитным полем.

Поплавковые сенсоры: а – с визуальным отображением; б – с электрическим считыванием; в – электрическая схема; г – внутренняя конструкция; д – с механическим замыканием; е – ареометр

Рис. 3.6. Поплавковые сенсоры: а – с визуальным отображением; б – с электрическим считыванием; в – электрическая схема; г – внутренняя конструкция; д – с механическим замыканием; е – ареометр

Небольшие постоянные магниты размещены в теле поплавка. В каждый момент срабатывает лишь тот переключатель, который располагается внутри поплавка и поэтому подвержен действию магнитов. Сопротивление электрической цепи прямо зависит от местоположения поплавка и, следовательно, – от уровня жидкости.

Еще одна конструкция поплавкового сенсора показана на рис. 3.6, д. Здесь поплавок жестко прикреплен к одному концу трубки, противоположный конец которой закреплен на оси. При повышении уровня жидкости и всплывании поплавка, трубка поворачивается вокруг оси и при некотором уровне жидкости замыкает электрический контакт или перекрывает отверстие, через которое течет жидкость.

Для измерения плотности жидкостей часто применяют ареометры. Ареометр состоит из полой стеклянной, металлической или пластмассовой капсулы 4 ( рис. 3.6, е ), к которой прикреплена тонкая "шейка" со шкалой 5. Капсулу 4 заполняют дробью с таким расчетом, чтобы капсула была полностью погружена в контролируемую жидкость, но не тонула в ней, а плавала, и часть шейки со шкалой 5 выступала над поверхностью жидкости. Согласно закону Архимеда условие плавания ареометра имеет вид:

mg=\rho gV, ( 3.1)
где m – масса ареометра, g – ускорение силы тяжести, \rho – плотность жидкости, V – объем части ареометра, погруженной в жидкость. Пусть при некоторой "стандартной" плотности жидкости \rho_0 ареометр плавает в ней, будучи погружен до соответствующей отметки на шкале. Если плотность жидкости будет больше, то объём части ареометра, погруженной в жидкость, уменьшится, и ареометр слегка всплывет – тем больше, чем больше плотность жидкости и чем меньше площадь поперечного сечения "шейки" 5. Если же плотность жидкости уменьшится, то ареометр погрузится в неё глубже. Таким образом, глубина погружения ареометра в жидкость однозначно зависит от её плотности. И вертикальное перемещение шейки ареометра относительно поверхности жидкости является сигналом изменения плотности жидкости. На этом принципе построены и широко применяются

  • спиртомеры – ареометры для определения объёмного содержания спирта в воде или воды в спирте;
  • сахаромеры – ареометры для определения содержания сахара в сиропе;
  • солемеры – ареометры для определения содержания соли в рассоле;
  • кислотомеры – ареометры для определения содержания кислот в растворе;
  • ареометры для определения плотности молока, морской воды, нефти и нефтепродуктов, электролитов и т. д.

Для определения коэффициентов поверхностного натяжения жидкостей \sigma используют капиллярные трубки, в которых высота поднятия или опускания столбика жидкости h определяется величиной поверхностного натяжения и плотностью \rho жидкости:

h=4\sigma/(d\rho g), ( 3.2)
где dдиаметр капилляра, g – ускорение силы тяжести.

Примером чувствительных элементов, в которых первичные сигналы появляются в виде линейного перемещения, служат также жидкости в сообщающихся сосудах. Одним из примеров является широко известный ртутный барометрсенсор атмосферного давления, устройство и принцип действия которого Вы, несомненно, проходили в школе. Еще один пример чувствительного элемента с линейным перемещением – подвижная игла "звукоснимателей", которая до середины прошлого века широко применялась для "считывания" речи, пения, музыки, записанных на распространенных тогда граммофонных пластинках.