Автор: Михаил Иванов | Московский физико-технический институт
Форма обучения:
дистанционная
Стоимость самостоятельного обучения:
бесплатно
Доступ:
свободный
Документ об окончании:
 
Уровень:
Профессионал
Длительность:
25:31:00
Студентов:
664
Выпускников:
58
Качество курса:
4.67 | 4.00
Данный курс представляет собой обзор методов дифференциальной геометрии применяющихся в классической теории поля.
В качестве основных примеров в курсе рассматриваются классическая электродинамика и общая теория относительности. Начиная с 2001-2002 учебного года курс читается автором в МФТИ как семестровый курс (весенний семестр) для студентов 3-4 курса.
Специальности: Физик
Теги: топология
 

План занятий

Занятие
Заголовок <<
Дата изучения
Лекция 3
2 часа 3 минуты
Дифференцируемое многообразие и тензоры на нем
-
Лекция 5
1 час 54 минуты
Скобки Пуассона, дифференциальные формы и поливекторы
Скобка Пуассона рассматривается как скобка Ли, устанавливается ее связь с коммутаром векторных полей. Рассматриваются полностью антисимметричные тензоры: формы и поливекторы. Обсуждаются операции, которые позволяют удобно работать именно с антисимметричными тензорами.
Оглавление
-
Лекция 6
1 час 44 минуты
Дифференциальные формы, поверхности, дуальность
Демонстрируется геометрический смысл дифференциальных форм как непрерывного распределения поверхностей и смысл поверхностей, как сингулярных дифференциальных форм. Вводится форма объема и используется для определения операции ходжевской дуальности и дивергенции поливектора. Вводится метрика. Обсуждается физический смысл вводимых понятий.
Оглавление
-
Лекция 7
1 час 44 минуты
Электромагнитное поле на языке дифференциальных форм. Действие
Демонстрируется удобство записи основных уравнений электродинамики на языке дифференциальных форм. Рассматриваются формы потенциала, электромагнитного поля, плотности тока. Действие для электромагнитного поля записывается и варьируется полностью на языке дифференциальных форм.
Оглавление
-
Лекция 8
1 час 53 минуты
Ковариантная прозводная
Вводятся понятия ковариантной производной, связности и параллельного переноса. Строятся тензоры кручения и кривизны. Вводится понятие расслоения над группой.
Оглавление
-
Лекция 9
1 час 54 минуты
Расслоения, связности, ковариантные производные
Вводятся понятия расслоения и связности над расслоением. Обсуждается их геометрический и физический смысл. Понятия параллельного переноса и кривизны обобщаются на расслоения. Вводится понятие калибровочного поля, которое иллюстрируется физическими примерами. Выводится связь между метрикой, символами Кристоффеля и ньютоновским гравитационным полем.
Оглавление
-
Лекция 10
1 час 43 минуты
Действие в общей теории относительности
Из действия для частицы в гравитационном поле выводятся уравнения движения, которые совпадают с уравнениями геодезической. Вводится и варьируется действие для гравитационного поля (пространства-времени). Получаются уравнения Эйнштейна.
Оглавление
-
Лекция 11
1 час 40 минут
Энергия, импульс и уравнения Эйнштейна
Обсуждаются свойства уравнений Эйнштейна. Обсуждается роль тензора энергии-импульса в общей теории относительности. Разбирается простейшие пример скалярного поля материи. Обсуждаются уравнения для слабого гравитационного поля как линейное приближение уравнений Эйнштейна.
Оглавление
-
Лекция 12
1 час 47 минут
Гравитационные волны. Глобальная структура пространства-времени
Рассмотрены бесконечномалые преобразования координат. Подсчитано число калибровочных условий. Выведены уравнения гравитационных волн. Вводятся и обсуждаются на примерах диаграммы Ньюмана-Пенроуза.
Оглавление
-
Лекция 13
1 час 38 минут
Геометрическое моделирование упругих сред
Излагается геометрический метод построения моделей релятивистских упругих сред без диссипации. Рассматриваются примеры, обсуждаются возможности построения сложных моделей, преимущества и сложности рассматриваемого подхода. В рамках курса данная лекция может рассматриваться как факультативная.
Оглавление
-
1 час 40 минут
-
Николай Щербаков
Николай Щербаков
Россия, Москва
Олег Корсак
Олег Корсак
Латвия, Рига