Московский государственный технологический университет «Станкин»
Опубликован: 18.05.2005 | Доступ: свободный | Студентов: 4971 / 972 | Оценка: 3.93 / 3.84 | Длительность: 11:45:00
ISBN: 978-5-9556-0024-6
Специальности: Программист
Лекция 6:

Методология построения экспертных систем

< Лекция 5 || Лекция 6: 123 || Лекция 7 >

Трудности при разработке экспертных систем

Разработка ЭС связана с определенными трудностями, которые необходимо хорошо знать, так же как и спос обы их преодоления. Рассмотрим подробнее эти проблемы.

  1. Проблема извлечения знаний экспертов. Ни один специалист никогда просто так не раскроет секреты своего профессионального мастерства, свои сокровенные знания в профессиональной области. Он должен быть заинтересован материально или морально, причем хорошо заинтересован. Никто не хочет рубить сук, на котором сидит. Часто такой специалист опасается, что, раскрыв все свои секреты, он будет не нужен компании. Вместо него будет работать экспертная система. Избежать эту проблему поможет выбор высококвалифицированного эксперта, заинтересованного в сотрудничестве.
  2. Проблема формализации знаний экспертов. Эксперты -специалисты в определенной области, как правило, не в состоянии формализовать свои знания. Часто они принимают правильные решения на интуитивном уровне и не могут аргументированно объяснить, почему принято то или иное решение. Иногда эксперты не могут прийти к взаимопониманию (фраза "встретились два геолога, у них было три мнения" - не шутка, а реальная жизнь). В таких ситуациях поможет выбор эксперта, умеющего ясно формулировать свои мысли и легко объяснять другим свои идеи.
  3. Проблема нехватки времени у эксперта. Выбранный для разработки эксперт не может найти достаточно времени для выполнения проекта. Он слишком занят. Он всем нужен. У него есть проблемы. Чтобы избежать этой ситуации, необходимо получить от эксперта, прежде чем начнется проект, согласие тратить на проект время в определенном фиксированном объеме.
  4. Правила, формализованные экспертом, не дают необходимой точности. Проблему можно избежать, если решать вместе с экспертом реальные задачи. Не надо придумывать "игрушечных" ситуаций или задач. В условиях задач нужно использовать реальные данные, такие как лабораторные данные, отчеты, дневники и другую информацию, взятую из практических задач. Постарайтесь говорить с экспертом на одном языке, используя единую терминологию. Эксперт, как правило, легче понимает правила, записанные на языке, близком к естественному, а не на языке типа LISP или PROLOG.
  5. Недостаток ресурсов. В качестве ресурсов выступают персонал (инженеры знаний, разработчики инструментальных средств, эксперты ) и средства построения ЭС (средства разработки и средства поддержки). Недостаток благожелательных и грамотных администраторов порождает скептицизм и нетерпение у руководителей. Повышенное внимание в прессе и преувеличения вызвали нереалистические ожидания, которые приводят к разочарованию в отношении экспертных систем. ЭС могут давать не самые лучшие решения на границе их применимости, при работе с противоречивыми знаниями и в рассуждениях на основе здравого смысла. Могут потребоваться значительные усилия, чтобы добиться небольшого увеличения качества работы ЭС. Экспертные системы требуют много времени на разработку. Так, создание системы PUFF для интерпретации функциональных тестов легких потребовало 5 человеко-лет, на разработку системы PROCPECTOR для разведки рудных месторождений ушло 30 человеко-лет, система XCON для расчета конфигурации компьютерных систем на основе VAX 11/780 потребовала 8 человеко-лет. ЭС последних лет разрабатываются более быстрыми темпами за счет развития технологий ЭС, но проблемы остались. Удвоение персонала не сокращает время разработки наполовину, потому что процесс создания ЭС - это процесс со множеством обратных связей. Все это необходимо учитывать при планировании создания ЭС.
  6. Неадекватность инструментальных средств решаемой задаче. Часто определенные типы знаний (например, временные или пространственные) не могут быть легко представлены на одном ЯПЗ, так же как и разные схемы представления (например, фреймы и продукции) не могут быть достаточно эффективно реализованы на одном ЯПЗ. Некоторые задачи могут быть непригодными для решения по технологии ЭС (например, отдельные задачи анализа сцен). Необходим тщательный анализ решаемых задач, чтобы определить пригодность предлагаемых инструментальных средств и сделать правильный выбор.

О других трудностях и ловушках при создании ЭС более подробно можно прочитать в книге Д.Уотермана [ 6.1 ] и учебнике [ 1.2 ] .

Методология построения экспертных систем

Рассмотрим методику формализации экспертных знаний на примере создания экспертных диагностических систем (ЭДС).

Целью создания ЭДС является определение состояния объекта диагностирования (ОД) и имеющихся в нем неисправностей.

Состояниями ОД могут быть: исправно, неисправно, работоспособно. Неисправностями, например, радиоэлектронных ОД являются обрыв связи, замыкание проводников, неправильное функционирование элементов и т.д.

Число неисправностей может быть достаточно велико (несколько тысяч). В ОД может быть одновременно несколько неисправностей. В этом случае говорят, что неисправности кратные.

Введем следующие определения. Разные неисправности ОД проявляются во внешней среде информационными параметрами. Совокупность значений информационных параметров определяет "информационный образ" (ИО) неисправности ОД. ИО может быть полным, то есть содержать всю необходимую информацию для постановки диагноза, или, соответственно, неполным. В случае неполного ИО постановка диагноза носит вероятностный характер.

Основой для построения эффективных ЭДС являются знания эксперта для постановки диагноза, записанные в виде информационных образов, и система представления знаний, встраиваемая в информационные системы обеспечения функционирования и контроля ОД, интегрируемые с соответствующей технической аппаратурой.

Для описания своих знаний эксперт с помощью инженера по знаниям должен выполнить следующее.

  1. Выделить множество всех неисправностей ОД, которые должна различать ЭДС.
  2. Выделить множество информативных (существенных) параметров, значения которых позволяют различить каждую неисправность ОД и поставить диагноз с некоторой вероятностью.
  3. Для выбранных параметров следует выделить информативные значения или информативные диапазоны значений , которые могут быть как количественными, так и качественными. Например, точные количественные значения могут быть записаны: задержка 25 нсек, задержка 30 нсек и т.д. Количественный диапазон значений может быть записан: задержка 25--40 нсек, 40--50 нсек, 50 нсек и выше. Качественный диапазон значений может быть записан: индикаторная лампа светится ярко, светится слабо, не светится.

Для более удобного дальнейшего использования качественный диапазон значений может быть закодирован, например, следующим образом:

  • светится ярко Р1 = +++ (или Р1 = 3 ),
  • светится слабо Р1 = ++ (или Р1 = 2 ),
  • не светится Р1 = + (или Р1 = 1 ).

Процедура получения информации по каждому из параметров определяется индивидуально в каждой конкретной системе диагностирования. Эта процедура может заключаться в автоматическом измерении параметров в ЭДС, в ручном измерении параметра с помощью приборов, качественном определении параметра, например, светится слабо, и т.д.

  1. Процедура создания полных или неполных ИО каждой неисправности в алфавите значений информационных параметров может быть определена следующим образом. Составляются диагностические правила, определяющие вероятный диагноз на основе различных сочетаний диапазонов значений выбранных параметров ОД. Правила могут быть записаны в различной форме. Ниже приведена форма записи правил в виде таблицы.
Таблица 6.1. Диагностические правила
Номер Р1 Р2 Р3 Диагноз Вероятность диагноза Примечания
1 +++ Неисправен блок А1 0.95
2 12-15 + Неисправен блок А2 0.80

Для записи правил с учетом изменений по времени следует ввести еще один параметр Р0 - время (еще один столбец в таблице). В этом случае диагноз может ставиться на основе нескольких строк таблицы, а в графе Примечания могут быть указаны использованные тесты. Диагностическая таблица в этом случае представлена в таблице 6.1.

Таблица 6.2. Динамические диагностические правила
Номер Р0 Р1 Р2 Р3 Диагноз Вероятность диагноза Примечания
1 12:00 + + + тест Т1
2 12:15 ++ ++ + Неисправен блок А3 0.90

Для записи последовательности проведения тестовых процедур и задания ограничений (если они есть) на их проведение может быть предложен аналогичный механизм. Механизм записи последовательности проведения тестовых процедур в виде правил реализуется, например, следующим образом:

ЕСЛИ: Р2 = 1
ТО: тест = Т1, Т3, Т7

где Т1, Т3, Т7 - тестовые процедуры, подаваемые на ОД при активизации (срабатывании) соответствующей продукции.

В современных ЭДС применяются различные стратегии поиска решения и постановки диагноза, которые позволяют определить необходимые последовательности тестовых процедур. Однако приоритет в ЭС отдается прежде всего знаниям и опыту, а лишь затем логическому выводу.

Данная методика будет применена в следующей лекции при создании экспертной системы управления технологическим процессом.

< Лекция 5 || Лекция 6: 123 || Лекция 7 >
Дмитрий Черепанов
Дмитрий Черепанов

Неоднократно находил ошибки в тестах, особенно в экзаменационных вопросах, когда правильно данный ответ на вопрос определялся в итоге как не правильно отвеченный... Из-за этого сильно страдает конечный бал! Да еще в заблуждение студентов вводит! Они-то думают, что это они виноваты!!! Но они тут не причем! Я много раз проверял ответы на некоторые такие "ошибочные" вопросы по нескольким источникам - результат везде одинаковый! Но ИНТУИТ выдавал ошибку... Как это понимать?

Из-за подобных недоразумений приходиться часами перерешивать экзамен на отличную оценку...!!!

Исправьте, пожалуйста, такие "ошибки"...

Анжелика Шлома
Анжелика Шлома

Огромная просьба сделать проще тесты, это просто ужас какой-то! Слишком сложно!