Московский государственный университет имени М.В.Ломоносова
Опубликован: 16.09.2005 | Доступ: свободный | Студентов: 15528 / 1104 | Оценка: 4.26 / 4.03 | Длительность: 15:06:00
ISBN: 978-5-9556-0039-0
Специальности: Программист
Лекция 6:

Устройство компьютера. Оперативная память, процессор, регистры процессора. Аппаратный стек

< Лекция 5 || Лекция 6: 1234 || Лекция 7 >

Процессор

Процессор является основой любого компьютера. Это большая микросхема, содержащая внутри себя сотни тысяч или даже миллионы элементов. Современные процессоры чрезвычайно сложны и могут содержать несколько уровней построения и описания. Так, можно различать внешние команды процессора в том виде, в котором они используются в программах и записываются в оперативной памяти, и внутренний микрокод, применяемый для реализации внешних команд. Процессор может содержать внутри себя устройства, предназначенные для ускорения работы, — конвейер команд, устройство опережающей выборки из памяти, кеш-память и т.п.

Рассмотрим лишь самые общие принципы построения и работы процессора, которые одинаковы как для примитивных, так и для самых современных процессоров.

Любой процессор имеет устройство, выполняющее команды, и собственную внутреннюю память, реализованную внутри микросхемы процессора. Она называется регистрами процессора. Имеется 3 типа регистров:

  • общие регистры хранят целые числа или адреса. Размер общего регистра совпадает с размером машинного слова и в 32-разрядной архитектуре равен четырем байтам. Число общих регистров и их назначение зависит от конкретного процессора. В большинстве Ассемблеров к ним можно обращаться по именам R0, R1, R2, ...Среди общих регистров имеются регистры специального назначения: указатель стека SP (Stack Pointer), счетчик команд PC (Program Counter) и др.;
  • регистр флагов содержит биты, которые устанавливаются в единицу или в ноль в зависимости от результата выполнения последней команды. Так, бит Z устанавливается в единицу, если результат равен нулю (Zero), бит N — если результат отрицательный (Negative), бит V — если произошло переполнение (oVerflow), бит С - если произошел перенос единицы из старшего или младшего разряда (Carry), например, при сложении двух целых чисел или при сдвиге. Значения битов в регистре флагов используются в командах условных переходов;
  • плавающие регистры содержат вещественные числа. В простых процессорах аппаратная поддержка арифметики вещественных чисел может отсутствовать. В этом случае плавающих регистров нет, а операции с вещественными числами реализуются программным путем.

Команды, или инструкции, процессора состоят из кода операции и операндов. Команда может вообще не иметь операндов или иметь один, два, три операнда. Команды с числом операндов большим трех встречаются лишь в процессорах специального назначения (служащих, например, для обработки сигналов) и в обычных архитектурах не используются. Чаще всего применяются двухадресные и трехадресные архитектуры: к двухадресным относятся, к примеру, все процессоры серии Intel 80x86, к трехадресным — серии Motorola 68000. В двухадресной архитектуре команда сложения выглядит следующим образом:

add X, Y

что означает

X := X + Y,

т.е. один из аргументов команды является одновременно и ее результатом. Этот аргумент называется получателем (destination). Аргумент, который не меняется в результате выполнения команды, называется источником (source). Среди программистов нет единого мнения о том, в каком порядке записывать аргументы при использовании Ассемблера, т.е. в символической записи машинных команд. Например, в Ассемблере "masm" фирмы IBM для процессоров Intel 80x86 получатель всегда записывается первым, а источник вторым. Ассемблер "masm" используется в операционных системах MS DOS и Windows. В Ассемблере "as", который входит в состав компилятора "gcc" и используется в системах типа Unix (Linux и т.п.), получатель всегда является последним аргументом. Та же команда сложения записывается в "as" как

add Y, X

что означает сложить Y и X и результат записать в X.

В трехадресной архитектуре команда сложения имеет 3 операнда:

add X, Y, Z

Получателем в трехадресной архитектуре обычно является третий аргумент, т.е. в данном случае сумма X+Y записывается в Z.

Операндами команды могут быть регистры или элементы памяти. В действительности, конечно, процессор всегда сначала копирует слово из памяти в регистр, который может быть либо явно указан в команде, либо использоваться неявно. Операция всегда выполняется с содержимым регистров. После этого результат может быть записан в память либо оставлен в регистре. Например, при выполнении команды увеличения целого числа на единицу

inc X

в случае, когда операнд X является словом оперативной памяти, содержимое слова X сначала неявно копируется во внутренний регистр процессора, затем выполняется его увеличение на единицу, и после этого увеличенное значение записывается обратно в память.

Имеется несколько способов задания операнда, находящегося в оперативной памяти, они называются режимами адресации. Это

  • абсолютная адресация - когда в команде указывается константа, равная адресу аргумента;
  • косвенная адресация - когда в команде указывается регистр, содержащий адрес аргумента;
  • относительная адресация - адрес аргумента равен сумме содержимого регистра и константы, задающей смещение;
  • индексная адресация с масштабированием - адрес аргумента равен сумме содержимого базового регистра, константы, задающей смещение, а также содержимого индексного регистра, умноженного на масштабирующий множитель. Масштабирующий множитель может принимать значения 1, 2, 4, 8. Этот режим удобен для обращения к элементу массива.

Бывают и другие, более изощренные, режимы адресации, когда, например, адрес аргумента содержится в слове, адрес которого содержится в регистре (так называемая двойная косвенность).

CISC и RISC-процессоры

Существует два подхода к конструированию процессоров. Первый состоит в том, чтобы придумать как можно больше разных команд и предусмотреть как можно больше разных режимов адресации. Процессоры такого типа называются CISC-процессорами, от слов Сomplex Instruction Set Computers. Это, в частности, Intel 80x86 и Motorola 68000. Противоположный подход состоит в том, чтобы реализовать лишь минимальное множество команд и режимов адресации, процессоры такого типа называются RISC-процессорами, от слов Reduced Instruction Set Computers. Примеры RISC-процессоров: DEC Alpha, Power PC, Intel Itanium.

Казалось бы, CISC-процессоры должны иметь преимущество перед RISC-процессорами, но на самом деле все обстоит строго наоборот. Дело в том, что простота набора команд процессора облегчает его конструирование, в результате чего удается достичь следующих целей:

  1. все команды выполняются исключительно быстро, причем за одинаковое время, т.е. за фиксированное число тактов работы процессора;
  2. значительно поднимается тактовая частота процессора;
  3. намного увеличивается количество регистров процессора и объем кеш-памяти;
  4. удается добиться ортогональности режимов адресации, набора команд и набора регистров. Это означает, что нет каких-либо выделенных регистров или режимов адресации: в любых (или почти любых) командах можно использовать произвольные регистры и режимы адресации независимо друг от друга. Следует отметить, что к памяти могут обращаться лишь команды загрузки слова из памяти в регистр и записи из регистра в память, а все арифметические команды работают только с регистрами;
  5. простота команд позволяет эффективно организовать их выполнение в конвейере (pipeline), что значительно ускоряет работу программы.

Пункты 3 и 4 по достоинству оценят те, кому пришлось программировать на Ассемблере Intel 80x86, имеющем ряд ограничений на использование регистров и режимы адресации, к тому же и регистров в нем очень мало.

RISC-архитектуры обладают неоспоримыми преимуществами по сравнению с CISC-архитектурами — быстродействием, низкой стоимостью, удобством программирования и т.д. — и практически не имеют недостатков. Существование CISC-процессоров в большинстве случаев объясняется лишь традицией и требованием совместимости со старым программным обеспечением. Впрочем, существует и третий вариант — процессоры, которые по сути являются RISC-процессорами, но эмулируют внешнюю систему команд устаревших процессоров, например, современные процессоры Intel Pentium.

Алгоритм работы компьютера

Среди всех регистров процессора в любой архитектуре всегда имеется два выделенных регистра: это регистр PC, что означает Program Counter, по-русски его называют счетчиком команд, и регистр SP — Stack Pointer, т.е. указатель стека. Иногда регистр PC обозначают как IP, что означает Instruction Pointer, указатель инструкции. (Команды процессора часто называют инструкциями.)

В фон-Неймановской архитектуре, по которой построены все современные компьютеры, программа, состоящая из машинных команд, содержится в оперативной памяти. Регистр PC всегда содержит адрес команды, которая будет выполняться на следующем шаге. Алгоритм работы процессора выглядит следующим образом:

цикл до бесконечности выполнять
    | прочесть команду с адресом PC из оперативной памяти;
    | увеличить содержимое PC на длину прочитанной команды;
    | выполнить прочитанную команду;
    конец цикла

В простейшем случае, когда выполняется линейный участок программы, команды выбираются из памяти и выполняются последовательно, а содержимое регистра PC монотонно возрастает. Выполнение команды, однако, может приводить к изменению регистра PC. Таким образом организуются безусловные и условные переходы в программе, нарушающие последовательный порядок выполнения команд. С помощью команд условных и безусловных переходов реализуются конструкции ветвления и цикла. Команда перехода представляет собой либо прибавление константы к содержимому PC (константа может быть положительной или отрицательной), либо загрузку в PC адреса элемента памяти со всеми возможными режимами адресации. Первый способ используется для реализации переходов внутри подпрограммы (внутри функции в терминах языка Си), второй -- для перехода к подпрограмме. Впрочем, гораздо чаще в последнем случае используется команда call вызова подпрограммы, которая дополнительно запоминает точку возврата в регистре или в аппаратном стеке.

< Лекция 5 || Лекция 6: 1234 || Лекция 7 >
Федор Антонов
Федор Антонов

Здравствуйте!

Записался на ваш курс, но не понимаю как произвести оплату.

Надо ли писать заявление и, если да, то куда отправлять?

как я получу диплом о профессиональной переподготовке?

Ирина Калашникова
Ирина Калашникова

Добрый день, подскажите на тест после каждой лекции сколько дается попыток?