Опубликован: 26.06.2003 | Доступ: свободный | Студентов: 36634 / 5382 | Оценка: 4.07 / 3.80 | Длительность: 15:14:00
ISBN: 978-5-9556-0017-8
Лекция 9:

Распределение памяти

< Лекция 8 || Лекция 9: 123 || Лекция 10 >

Выделение памяти под строки

В следующем фрагменте программы мы динамически выделяем память под строку переменной длины и копируем туда исходную строку

// стандартная функция strlen подсчитывает
// количество символов в строке
int length = strlen(src_str);
// выделить память и добавить один байт
// для завершающего нулевого байта
char* buffer = new char[length + 1];
strcpy(buffer, src_str); 
// копирование строки

Операция new возвращает адрес выделенной памяти. Однако нет никаких гарантий, что new обязательно завершится успешно. Объем оперативной памяти ограничен, и может случиться так, что найти еще один участок свободной памяти будет невозможно. В таком случае new возвращает нулевой указатель ( адрес 0). Результат new необходимо проверять:

char* newstr;
size_t length = 4;
newstr = new (std::nothrow) char[length];
if (newstr == NULL) {  // проверить результат
          // обработка ошибок
}
// память выделена успешно

Рекомендации по использованию указателей и динамического распределения памяти

Указатели и динамическое распределение памяти – очень мощные средства языка. С их помощью можно разрабатывать гибкие и весьма эффективные программы. В частности, одна из областей применения Си++ – системное программирование – практически не могла бы существовать без возможности работы с указателями. Однако возможности, которые получает программист при работе с указателями, накладывают на него и большую ответственность. Наибольшее количество ошибок в программу вносится именно при работе с указателями. Как правило, эти ошибки являются наиболее трудными для обнаружения и исправления.

Приведем несколько примеров.

Использование неверного адреса в операции delete. Результат такой операции непредсказуем. Вполне возможно, что сама операция пройдет успешно, однако внутренняя структура памяти будет испорчена, что приведет либо к ошибке в следующей операции new, либо к порче какой-нибудь информации.

Пропущенное освобождение памяти, т.е. программа многократно выделяет память под данные, но "забывает" ее освобождать. Такие ошибки называют утечками памяти. Во-первых, программа использует ненужную ей память, тем самым понижая производительность. Кроме того, вполне возможно, что в 99 случаях из 100 программа будет успешно выполнена. Однако если потеря памяти окажется слишком большой, программе не хватит памяти под какие-нибудь данные и, соответственно, произойдет сбой.

Запись по неверному адресу. Скорее всего, будут испорчены какие-либо данные. Как проявится такая ошибка – неверным результатом, сбоем программы или иным образом – предсказать трудно

Примеры ошибок можно приводить бесконечно. Общие их черты, обуславливающие сложность обнаружения, это, во-первых, непредсказуемость результата и, во-вторых, проявление не в момент совершения ошибки, а позже, быть может, в том месте программы, которое само по себе не содержит ошибки (неверная операция delete – сбой в последующей операции new, запись по неверному адресу – использование испорченных данных в другой части программы и т.п.).

Отнюдь не призывая отказаться от применения указателей (впрочем, в Си++ это практически невозможно), мы хотим подчеркнуть, что их использование требует внимания и дисциплины. Несколько общих рекомендаций.

  1. Используйте указатели и динамическое распределение памяти только там, где это действительно необходимо. Проверьте, можно ли выделить память статически или использовать автоматическую переменную.
  2. Старайтесь локализовать распределение памяти. Если какой-либо метод выделяет память (в особенности под временные данные), он же и должен ее освободить.
  3. Там, где это возможно, вместо указателей используйте ссылки.
  4. Проверяйте программы с помощью специальных средств контроля памяти (Purify компании Rational, Bounce Checker компании Nu-Mega и т.д.)

Ссылки

Ссылка – это еще одно имя переменной. Если имеется какая-либо переменная, например

Complex x;

то можно определить ссылку на переменную x как

Complex& y = x;

и тогда x и y обозначают одну и ту же величину. Если выполнены операторы

x.real = 1;
x.imaginary = 2;

то y.real равно 1 и y.imaginary равно 2. Фактически, ссылка – это адрес переменной (поэтому при определении ссылки используется символ & -- знак операции взятия адреса ), и в этом смысле она сходна с указателем, однако у ссылок есть свои особенности.

Во-первых, определяя переменную типа ссылки, ее необходимо инициализировать, указав, на какую переменную она ссылается. Нельзя определить ссылку

int& xref;

можно только

int& xref = x;

Во-вторых, нельзя переопределить ссылку, т.е. изменить на какой объект она ссылается. Если после определения ссылки xref мы выполним присваивание

xref = y;

то выполнится присваивание значения переменной y той переменной, на которую ссылается xref. Ссылка   xref по-прежнему будет ссылаться на x. В результате выполнения следующего фрагмента программы:

int x = 10;
int y = 20;
int& xref = x;
xref = y;
x += 2;
cout << "x = " << x << endl;
cout << "y = " << y << endl;
cout << "xref = " << xref << endl;

будет выведено:

x = 22
y = 20
xref = 22

В-третьих, синтаксически обращение к ссылке аналогично обращению к переменной. Если для обращения к атрибуту объекта, на который ссылается указатель, применяется операция ->, то для подобной же операции со ссылкой применяется точка " .".

Complex a;
Complex* aptr = &a;
Complex& aref = a;
aptr->real = 1;
aref.imaginary = 2;

Как и указатель, ссылка сама по себе не имеет значения. Ссылка должна на что-то ссылаться, тогда как указатель должен на что-то указывать.

< Лекция 8 || Лекция 9: 123 || Лекция 10 >
Елена Шумова
Елена Шумова

Здравствуйте! Я у Вас прошла курс Язык программировая Си++.

Заказала сертификат. Хочу изменить способ оплаты. Как это сделать?

Маргарита Башкатова
Маргарита Башкатова
Анатолий Федоров
Анатолий Федоров
Россия, Москва, Московский государственный университет им. М. В. Ломоносова, 1989
Рустам Новиков
Рустам Новиков
Эстония, Таллин