Компания IBM
Опубликован: 28.08.2008 | Доступ: свободный | Студентов: 471 / 68 | Оценка: 4.33 / 4.05 | Длительность: 31:19:00
Лекция 10:

Управление процессами

< Лекция 9 || Лекция 10: 123456 || Лекция 11 >

Исключения, события и прерывания

Если нечто не соответствует общему правилу, то его обычно называют исключением из правила. В вычислительных системах также имеются исключения из общих правил обработки. В этом разделе мы рассмотрим обработку исключений, событий и прерываний на AS/400.

На аппаратном уровне обычно говорят о прерываниях. Как упоминалось выше в этой лекции, прерывание — это событие, отличное от команды перехода, которое изменяет нормальный порядок выполнения команд. Причиной прерывания может быть выполнение некоторой команды или некоторое действие за пределами текущей программы, например, завершение операции вводавывода. Архитектура PowerPC определяет полноценный механизм прерываний, позволяющий процессору изменять свое состояние в ответ на внешние сигналы, ошибки и необычные ситуации, возникающие при исполнении команд. Мы еще рассмотрим это подробнее.

Программы и процессы MI ничего не "знают" о прерываниях на аппаратном уровне. Однако, о прерывании, возникшем в результате исполнения программы MI, должно быть сообщено MI. За обнаружение, обработку и сообщение MI о прерываниях отвечает SLIC.

Исключения и события MI

В MI различаются исключения и события. Исключение — это либо ошибка, обнаруженная машиной при исполнении команды, либо определенное состояние, обнаруженное пользовательской программой. Событие — это происшествие, возникающее в процессе работы машины и, напротив, представляющее интерес для ее пользователей. Исключения синхронны, то есть вызываются исполнением некоторой команды. События асинхронны, то есть их причина — за пределами исполняющейся в данной момент команды. Часто исключения и события очень легко перепутать.

Рассмотрим несколько примеров. Предположим, что программа пытается разделить число на 0 — очевидная ошибка. Когда эта ошибка обнаружится, о ней будет сообщено с помощью исключения. Исключение синхронно, так как, если данные всегда одинаковы, та же самая ошибка будет происходить в том же самом месте при каждом выполнении программы.

Теперь представим себе, что параллельно с программой исполняется операция ввода-вывода, например, чтение записи с диска. В некоторый момент времени операция ввода-вывода завершается, и об этом факте необходимо сообщить. Механизм сообщения о завершении ввода-вывода — это событие, так как его причина — действие, не связанное с выполняемой в данный момент командой. Оно асинхронно, то есть оно не связано с исполнением программы и может произойти в любой момент.

Подобно подразделению исключений MI на два типа: ошибки и пользовательские состояния, — есть и два типа событий. Это объектные события, например, исчерпание максимума сообщений в очереди, и машинные события, например, истечение заданного интервала времени. Процесс MI следит за наступлением событий из определенного набора, и когда происходят все или некоторые из них, выполняет нужные действия.

С появлением моделей программ и процессов ILE в модель исключений были внесены изменения. Исключение в MI — формально определенное сообщение процесса. Все сообщения процесса хранятся в пространстве очередей процесса, являющемся частью структуры процессов ILE, описанной в предыдущем разделе. Так как исключение доставляется как сообщение, то возможна задержка между сигнализацией об исключении и его обработкой. Эти характеристики описанной структуры исключений одинаковы и для исходных моделей, и для моделей ILE.

С появлением ILE мониторинг и обработка исключений стали явно управляться пользователем MI. Мониторы исключений используются для отслеживания исключений. Существуют команды MI для включения и отключения мониторов исключений. Одновременно может быть включено несколько мониторов. У каждого из них свой приоритет, в соответствии с которым осуществляется поиск и обработка прерываний в том случае, если включено несколько мониторов. С каждым монитором всегда связана внешняя процедура ILE, обрабатывающая исключения.

SLIC поддерживает мониторинг и обработку как событий, так и исключений. В "Объекты" мы говорили, что машина ведет мониторинг доступа к системным объектам. Если добавить к этому некоторые специальные команды PowerPC, то получится почти полное представление о масштабах этой функции. Контроль за исключениями осуществляется, в основном, аппаратурой, которая сообщает о них процедурам обработки исключений SLIC с помощью механизма прерываний PowerPC. В следующем разделе мы рассмотрим компонент управления исключениями SLIC.

Управление исключениями SLIC


Управление исключениями в SLIC заключается, в основном, в маршрутизации. Маршрутизация запускается механизмом прерываний PowerPC, когда аппаратура обнаруживает прерывание. После возникновения исключения все соответствующие компоненты SLIC получают возможность обработать его. Если исключение обработано, то процесс продолжается, как будто ничего не произошло. Если же исключение не обработано SLIC, то процесс завершается и исключение передается соответствующему обработчику исключений ILE.

Прерывания классифицируются по тому, вызваны ли они исполнением конкретной команды или какимто другим событием в системе. В архитектуре PowerPC определено 15 типов прерываний. Пять прерываний генерируются аппаратно, а именно:

  • сброс системы (System Reset) — прерывание при выключении или включении системы;
  • машинная ошибка (Machine Check), служащая для сообщения об аппаратных сбоях;
  • внешнее (External) — прерывание, уведомляющее процессор о том, что некоторое событие за его пределами (например, вводвывод) требует внимания;
  • монитор производительности (Performance Monitor), при включенном мониторинге производительности уведомляющий процессор о событии, за которым ведется наблюдение;
  • уменьшитель (Decrementer), используемый таймерами и извещающий процессор об истечении некоторого интервала времени.

Некоторые прерывания генерируются в результате выполнения команд. Перечислим их.

  • Память данных (Data Storage) — это прерывание сообщает, что команда предприняла безуспешные попытки доступа к хранилищу данных. Используется для сигнализации о невозможности трансляции эффективного адреса (страничная ошибка), нарушении защиты памяти или переполнении эффективного адреса (ЕАО).
  • Память команд (Instruction Storage) аналогично прерыванию памяти данных, но вызывается попыткой выбрать команду для исполнения.
  • Ошибка прямого сохранения (DirectStore Error) также аналогично прерыванию памяти данных, но возникает при обращении по адресу прямого сохранения (DS). Отметьте, что по этому адресу не может произойти страничная ошибка.
  • Выравнивание (Alignment) происходит при попытке обращения к операнду, который не выровнен на необходимую границу памяти.
  • Программное (Program) прерывание используется для сообщений типа попытки процессора выполнить привилегированную команду при отсутствии у пользователя соответствующих прав или попытки применить неверный код операции.
  • "Нет плавающей точки" (FloatingPoint Unavailable) — прерывание с этим названием возникает при попытке выполнить команду с плавающей точкой, если разряд в MSR указывает, что процессор не может выполнять таких команд. Архитектура PowerPC позволяет отключать операции с плавающей точкой.
  • Поддержка плавающей точки (FloatingPoint Assist) — это прерывание используется для программной поддержки относительно редко используемых и сложных операций с плавающей точкой.
  • Трассировка (Trace) — прерывание, генерируемое после успешного выполнения каждой трассируемой команды. Возможность пошаговой трассировки всех команд или переходов включается установкой разрядов в MSR.
  • Системный вызов (System Call) — прерывания этого типа достигаются исполнением соответствующей команды PowerPC. Подробней об этом — в следующем разделе.
  • Системный вызов по вектору (System Call Vectored) — тип прерывания, похожий на системный вызов. Эта команда, которая также описана в следующем разделе, аналогична команде системного вызова, но может передавать управление любой из 128 процедур.

Для обработки прерываний в SLIC предусмотрены специальные процедуры. Когда аппаратура обнаруживает прерывание, управление передается одному из обработчиков исключений первого уровня FLEH (First Level Exception Handlers). То, каким образом осуществляется аппаратная передача управления, будет рассмотрено далее. Если одна из процедур FLEH обработала исключение (в основном именно так и происходит), то управление возвращается к нормальной обработке команд.

Если исключение вызвано командой и не было обработано, то FLEH передает управление обработчику исключений второго уровня SLEH (Second Level Exception Handler). SLEH обрабатывает менее частые исключения, такие как исключение блокировки системного объекта. Он также отвечает за выделение исключений, которые не могут быть обработаны SLIC. Если необработанное исключение возникло, когда система исполняла команду, транслированную MI, то SLEH передает управление генератору исключений MI.

Если же необработанное исключение произошло при исполнении команды SLIC, то SLEH передает управление обработчику исключений третьего уровня TLEH (Third Level Exception Handler). TLEH получает управление от SLEH, от обработчика машинных ошибок (если таковая произошла при выполнении процедуры SLIC), или от любой другой процедуры SLIC, обнаружившей исключение.

Сначала TLEH вызывает обработчики исключений компонентов CSEH (Component Specific Exception Handlers), которые были установлены различными компонентами SLIC. CSEH используются для освобождения ресурсов, занятых выполнением некоторой операции, или для очистки частичных результатов неудавшейся операции, или исполнения кода, позволяющего продолжать работу при ошибке. CSEH, которые должны выполняться для данной задачи, определяются блоками CSEH, присоединенными к TDE задачи. Каждый блок CSEH содержит адрес процедуры CSEH, указатель стека и данные, необходимые этой процедуре. После выполнения всех CSEH задачи управление возвращается обратно TLEH.

Затем TLEH определяет, как быть с данным исключением. Если исключение произошло в задаче SLIC, которая не является частью какоголибо процесса MI, то задача уничтожается. Если же исключение произошло в задаче, выполняющейся как часть процесса MI, то управление передается генератору исключений MI.

Генератор исключений MI подготавливает данные для сообщения процессу, выполняет некоторые операции очистки и отправляет сообщение в пространство очередей соответствующего процесса.

Аппаратное переключение контекста


Так как только что описанным процедурам обработки исключений может потребоваться доступ к привилегированным командам PowerPC, механизм прерываний должен иметь возможность переключать состояние процессора при передаче управления одной из таких процедур. Обычно говорят, что в этом случае происходит переключение контекста процессора. Контекст — это состояние процессора относительно привилегий, перемещения, защиты памяти, 64-разрядного режима и т. д.

В дополнение к простому переключению, механизм прерываний должен выполнять синхронизацию контекста. Синхронизация означает, что аппаратура процессора обязана гарантировать завершение выполнения всех команд, запущенных до прерывания, в том же контексте, в котором они были запущены. Команды, следующие после этой операции, должны выбираться и исполняться в новом контексте.

В "Одноуровневая память" мы рассматривали регистр состояния машины (MSR) и значение некоторых его битов. Архитектура PowerPC определяет для MSR и некоторые другие биты, описанные в предыдущем разделе. Оставшиеся биты рассматриваться не будут, так как не относятся к обсуждаемой теме. Здесь лишь важно понимать, что значения всех битов MSR определяют контекст процессора. Значения битов могут измениться при прерывании процессора.

Если при вызове процедуры SLIC необходимо изменить контекст процессора, то может быть использована команда "Системный вызов" ("sc"). Эта команда в транслированных программах MI позволяет обратиться за обслуживанием к компонентам ОС в SLIC. Как мы только что упоминали, при исполнении команды "sc" процессор генерирует прерывание системного вызова. Читатели, знакомые с System/370, могут заметить, что этим команда "sc" в PowerPC очень похожа на команду "Вызов супервизора" ("SVC") в архитектуре System/370. Архитектура PowerPC ведет свою родословную от разработанного в середине 70х миникомпьютера 801, архитектура которого создавалась под большим влиянием мэйнфреймов System/370. В некотором роде и MSR — аналог "Слова состояния программы" ("PSW") System/370.

При возникновении прерывания аппаратура процессора PowerPC сначала выполняет синхронизацию контекста, чтобы гарантировать, что обработка прерывания не начнется, пока не будет определено, какие прерывания вызовут выполняющиеся в данный момент команды. Обратите внимание: у каждого прерывания есть приоритет. Так что если обработки ожидают несколько прерываний, то первым будет выбрано прерывание с наивысшим приоритетом. Затем эффективный адрес команды, исполнявшейся при возникновении прерывания, сохраняется в специальном 64-разрядном регистре процессора, который называется "Регистр сохранения-восстановления состояния машины 0" или SSR 0 (Machine Status Save/Restore Register 0). Если прерывание было вызвано командой "sc", то в SSR 0 будет помещен адрес команды, следующей за "sc". Далее некоторые биты текущего MSR сохраняются в другом 64-разрядном регистре, который называется SSR 1. Наконец, остальные разряды SSR 1 заполняются информацией, специфичной для типа данного прерывания.

После сохранения текущего состояния машины, аппаратура прерываний изменяет некоторые биты MSR, причем для каждого типа прерываний — свои. В частности, биты перемещения (MSRIR и MSRDR) всегда отключаются, так что процедуры — обработчики прерываний используют реальные адреса и не могут вызвать страничных ошибок. После изменения битов MSR аппаратура прерываний устанавливает адрес следующей выбираемой команды по определенному смещению относительно некоторого базового адреса. Архитектурой PowerPC определены конкретные смещения для каждого типа прерываний. Еще один бит MSR, называемый префиксом прерывания, выбирает один из двух базовых адресов.

В результате только что описанной аппаратной обработки прерывания управление передается первой команде одного из обработчиков прерываний SLIC. Перед этим происходит переключение контекста процессора, так что процедура может, например, выполнять привилегированные команды.

В конце процедуры обработки прерываний выполняется еще одна специальная команда PowerPC — "Возврат из прерывания" или "rfi" ("Return From Interrupt"). По этой команде происходит восстановление процессора в состояние, в котором он находился до прерывания. Сначала часть битов SSR 1 помещается в соответствующие биты MSR. Затем, под управлением нового значения MSR, выбирается следующая команда по адресу из SSR 0. Если на момент возникновения только что обработанного прерывания имелись и другие ожидающие исключения, то перед выполнением первой команды в контексте, установленном командой "rti", генерируется прерывание, связанное с ожидающим исключением наивысшего приоритета.

Две только что описанные команды PowerPC: "sc" и "rti", — позволяют процессору вызывать, если надо, обработчик прерывания и возвращаться к нормальной деятельности, когда прерывание обработано.

В AS/400 мы хотели иметь аналогичный механизм, позволяющий одной процедуре SLIC вызывать другую. Например, планировалось обеспечить высокую эффективность вызова SLEH из FLEH. С этой целью в архитектуре PowerPC появились две новые команды: "системный вызов по вектору" или "scv" ("System Call Vectored") и "возврат из системного вызова по вектору" или "rfscv" ("Return From System Call Vectored").

Команда "scv" похожа на команду "sc", но есть и несколько важных отличий. Так, вместо передачи управление только по одному адресу, команда "scv" задает один из 128 адресов, по каждому из которых располагается отдельная процедура SLIC. Таким образом, с помощью команды "scv" можно эффективно передавать управление между процедурами SLIC.

Другая отличительная черта "scv" в том, что эта команда не изменяет значения битов MSR. Это означает, например, что вызванная процедура может использовать виртуальные адреса. При использовании виртуальной адресации процедуры SLIC можно писать так, что будет возможна откачка их страниц на диск.

Кроме того, команда "scv" не использует регистры SSR 0 и SSR 1 для сохранения состояния машины. Вместо этого, она задействует два процессорных регистра общего назначения.

Команда "rfscv", как это и следует из ее названия, выполняет возврат после "scv".

< Лекция 9 || Лекция 10: 123456 || Лекция 11 >