Форма обучения:
дистанционная
Стоимость самостоятельного обучения:
бесплатно
Доступ:
свободный
Документ об окончании:
 
Уровень:
Для всех
Длительность:
53:04:00
Студентов:
789
Выпускников:
40
Курс знакомит с числовыми множествами, последовательностями и функциями.
В начале курса даются основные понятия теории множеств, изучаются основные числовые множества, вводится понятие верхней и нижней грани. Вводится понятие числовой последовательности и её предела, изучаются вопросы сходимости. Далее даётся понятие функции, её предела в точке, в бесконечности. Изучаются свойства функций, имеющих предел. Рассматриваются бесконечно малые и бесконечно большие функции, их свойства. Вводится понятие непрерывности функции, точки разрыва, их классификация. Изучаются свойства непрерывных функций. Также рассматривается геометрический смысл производной, даётся определение касательной, вопросы дифференцируемости функции, вычисляются производные сложной функции, обратной функции, основных элементарных функций. Вводятся понятия производной и дифференциала высших порядков и доказываются теоремы Ролля, Лагранжа и Коши о средних значениях. Рассматриваются вопросы раскрытия неопределённостей с помощью правила Лопиталя, формулы Тейлора и Маклорена. Даётся схема построения графика функции.
Специальности: Математик
 

План занятий

Занятие
Заголовок <<
Дата изучения
Лекция 1
42 минуты
Действительные числа и множества
Вводится понятие множества. Даётся определение действительных чисел, модуля (абсолютной величины) и числовой прямой. Вводится понятие точной верхней и нижней грани множества.
Оглавление
-
Лекция 2
36 минут
Числовая последовательность и ее предел
Дается определение числовой последовательности и её предела. Рассматривается геометрический смысл предела последовательности, доказываются единственность предела, арифметические свойства предела и предельные переходы в неравенствах. На примерах разбираются некоторые приёмы вычисления пределов.
Оглавление
-
Лекция 3
45 минут
Сходимость числовой последовательности. Бесконечно малые и бесконечно большие поcледовательности. Число е
Изучаются вопросы сходимости последовательности. Вводится понятия ограниченной и монотонной последовательности. Дается определение бесконечно больших и бесконечно малых последовательностей, а также рассматриваются их свойства. Вводится число е.
Оглавление
-
Тест 3
42 минуты
-
Множества. Метод математической индукции
Решаются задачи, связанные с понятием множества, подмножества, операций над множествами. Рассматриваются счётные множества. Определяются точные верхние и нижние грани множества. Решаются задачи, связанные с понятием действительного числа и его модуля. С помощью метода математической индукции доказываются некоторые утверждения.
-
Числовая последовательность и ее предел
Решаются задачи, связанные с понятием числовой последовательности и ее предела. Вычисляются пределы различных последовательностей, в том числе методами "деления на наибольшую степень" и "умножения на сопряженное". Рассматривается вопрос сходимости некоторых последовательностей.
-
Лекция 4
42 минуты
Функция. Предел функции в точке и бесконечности. Теоремы о пределах
Вводится понятие функции, рассматриваются способы задания функций. Даются определения предела функции в точке по Коши и по Гейне и в терминах окрестностей. Доказываются теоремы о единственности предела, об ограниченности функции, имеющей предел , о переходе к пределу в неравенствах и пределе промежуточной функции. Даётся определение предела функции в бесконечности.
Оглавление
-
Тест 4
21 минута
-
Лекция 5
39 минут
Бесконечно малые и бесконечно большие функции и их свойства. Арифметические свойства пределов
Вводится понятие бесконечно малых функций (б.м.ф.). Рассматриваются их свойства: сумма б.м.ф., произведение б.м.ф. на ограниченную и др. Доказываются арифметические свойства пределов. Вводится понятие бесконечно большой функции и устанавливается связь между б.б.ф. и б.м.ф.
Оглавление
-
Тест 5
33 минуты
-
Непрерывность функции. Основные элементарные функции. Замечательные пределы. Операции над непрерывными функциями
Вводятся различные определения непрерывности функции в точке, устанавливается связь между ними. Изучаются локальные свойства непрерывных функций. Рассматриваются основные элементарные функции и доказывается их непрерывность на примере функции cos x. Вычисляются замечательные пределы и рассматриваются операции над непрерывными функциями. Вводится понятие сложной функции и изучается её непрерывность.
Оглавление
-
Тест 6
24 минуты
-
Лекция 7
34 минуты
Точки разрыва. Свойства функций, непрерывных на отрезке
Вводится понятие точек разрыва функции и даётся их классификация. Рассматривается непрерывность справа и слева, на интервале и на отрезке. Изучаются свойства функций, непрерывных на отрезке: теоремы о нуле функции, о промежуточных значениях, теоремы Вейерштрасса.
Оглавление
-
Тест 7
21 минута
-
Лекция 8
1 час 15 минут
Равномерная непрерывность. Сравнение бесконечно малых функций. Эквивалентность. Символы о и О
Вводится понятие равномерной непрерывности и изучается ее связь с непрерывностью. Для бесконечно малых функций вводятся понятие порядка и эквивалентности. Доказываются теорема о замене бесконечно малых функций на эквивалентные и условие эквивалентности. Вводятся символы Ландау и изучаются асимптотические формулы.
Оглавление
-
Предел функции
Доказывается существование предела функции с помощью определения Коши. Вычисляются пределы функций, применяя теорему об арифметических свойствах предела. Раскрываются неопределенности с помощью разложения на множители, деления на наибольшую степень, умножения на сопряженное выражение, введения новой переменной. Решаются задачи с использованием замечательных пределов.
Оглавление
-
Непрерывность, точки разрыва. Решение уравнений и неравенств
-
Лекция 9
1 час 1 минута
Производная. Дифференцируемость функции. Дифференциал функции
Вводится понятие производной функции в точке, рассматривается её геометрический и физический смысл. Даются определение касательной и нормали к кривой и выводятся их уравнения. Понятия правой и левой производной функции в точке, бесконечной производной, гладкой функции рассматриваются на примерах. Вводится понятие дифференцируемой в точке функции, рассматривается связь дифференцируемости и существования производной. Доказывается непрерывность дифференцируемой функции. Даётся определение дифференциала функции и рассматривается его геометрический смысл.
Оглавление
-
Лекция 10
51 минута
Дифференцирование суммы, произведения и частного. Производные некоторых основных элементарных функций. Дифференцирование сложной функции
Даются правила дифференцирования суммы, произведения и частного двух функций. Вычисляются производные функций Доказывается правило дифференцирования сложной функции и рассматривается инвариантность формы дифференциала.
Оглавление
-
Тест 10
24 минуты
-
Лекция 11
46 минут
Понятие обратной функции. Производная обратной функции. Производные гиперболических функций. Логарифмическое дифференцирование. Применение дифференциалов в приближённых вычислениях
Вводится понятие обратной функции и формулируется правило её дифференцирования. Вычисляются производные функций , а также гиперболических функций. Составляется таблица производных основных элементарных функций. Рассматривается приём логарифмического дифференцирования для отыскания производной сложной функции. Выводится формула для приближённого вычисления значения функции.
Оглавление
-
Тест 11
21 минута
-
Лекция 12
1 час 11 минут
Производные высших порядков. Дифференциалы высших порядков. Дифференцирование функции, заданной параметрически. Вектор-функция скалярного аргумента
Вводится понятие производной высшего порядка, определяются правила вычисления производных суммы и произведения функций. Даётся определение дифференциала высшего порядка и выводится его связь с производными. Рассматриваются функции, заданные параметрически, изучается вопрос их дифференцирования. Вводится понятие вектор-функции скалярного аргумента, её предела и непрерывности. Рассматривается производная вектор-функции по её аргументу. Формулируются правила дифференцирования.
Оглавление
-
Тест 12
24 минуты
-
Дифференцирование функций, заданных параметрически. Производная вектор-функции. Производные и дифференциалы высших порядков
Вычисляются производные функций, заданных параметрически и производные вектор-функций. Вычисляются производные и дифференциалы высшего порядка для различных функций, в том числе для заданных параметрически.
-
Лекция 13
45 минут
Теоремы о среднем значении
Формулируются и доказываются теоремы Роля, Лагранжа и Коши. Рассматриваются их взаимосвязь. Дается геометрическая интерпретация теорем Роля и Лагранжа.
Оглавление
-
Тест 13
21 минута
-
Лекция 14
49 минут
Раскрытие неопределенностей (правило Лопиталя)
Рассматриваются неопределенности при вычислении пределов, формулируется и доказывается правило Лопиталя для их раскрытия. Рассматривается применение правила Лопиталя при неопределtнностях. Рассматриваются конкретные примеры вычисления пределов.
-
Лекция 15
1 час 9 минут
Формула Тейлора. Разложение по формуле Маклорена некоторых элементарных функций
Выводится формула Тейлора для многочлена степени n, дается определение формулы Маклорена для многочлена. Вводится понятия формулы Тейлора для функции и вычисляется остаточный член в форме Лагранжа. Рассматривается остаточный член в форме Пеано. Раскладываются по формуле Маклорена некоторые элементарные функции. Получение асимптотических оценок для элементарных функций из формулы Маклорена.
Оглавление
-
-
Лекция 16
49 минут
Признаки возрастания и убывания функции. Экстремум функции
Дается определение монотонной функции и доказывается связь между интервалами знакопостоянства производной и монотонности функции. Изучаются достаточные условие возрастания функции в точке. Вводятся понятия локального экстремума, максимума и минимума. Рассматриваются необходимое и достаточное условия эстремума Проводится исследование функций на максимум и минимум при помощи второй производной.
Оглавление
-
Лекция 17
40 минут
Наибольшее и наименьшее значение функции, непрерывной на отрезке. Направление выпуклости и точки перегиба кривой
-
Лекция 18
33 минуты
Асимптоты графика функции
-
Лекция 19
31 минута
Исследование функций на экстремум с помощью производных высшего порядка. Вычисление корней уравнений методами хорд и касательных
Проводится исследование функций на экстремум с помощью производных высшего порядка. Формулируется достаточное условие точки перегиба с помощью производных высшего порядка. Рассматривается метод хорд и касательных для решения уравнения.
Оглавление
-
Наибольшее и наименьшее значение функции, непрерывной на отрезке. Направление выпуклости и точки перегиба кривой. Асимптоты графика функции
-
1 час 40 минут
-
Илья Дмитриев
Илья Дмитриев

1. исходя из ПРЕДСТАВЛЕННЫХ лекций (практик, етц) совершенно не ясно какое значение выбирать в качестве х_0 !.  Процесс ПОДБОРА НЕ изложен. Подсмотрел на других сайтах.

2. Не ясно почему F (X_0) должно получаться ЦЕЛЫМ (как это в примерах неоднократно представлено), а не ДРОБНЫМ, например.

( мат.анализ-1 )

Андрей Кудырский
Андрей Кудырский

В контрольной работе номер 12 ошибок формулирования больше, чем во всех предыдущих.. В одном задании попалось: "найти корень квадратный".. и всё - из чего корень найти?!. У меня по этому поводу такой вопрос - я когда указываю на эти ошибки во время решения заданий - вы на них хоть как-то реагируете?! Или эти письма уходят в никуда?! Просто от системы никакого оповещения ниразу не приходило о том, чтобы на эти замечания была хоть какая-то реакция!

Эльдониз Мананев
Эльдониз Мананев
Россия
Павелас Танаисов
Павелас Танаисов
Россия