Московский государственный открытый университет им. В.С. Черномырдина
Опубликован: 13.03.2008 | Доступ: свободный | Студентов: 1369 / 366 | Оценка: 3.96 / 3.70 | Длительность: 15:45:00
Специальности: Разработчик аппаратуры
Лекция 12:

Алгоритмы проектирования технологических операций

< Лекция 11 || Лекция 12: 12 || Лекция 13 >

12.2. Формирование оптимальной операции

Для формирования оптимальной операции используют метод последовательного анализа вариантов. По схеме последовательного анализа в результате сравнения устанавливают доминирование одних вариантов над другими. После этого формируют правило отсеивания вариантов. Зная технологические возможности оборудования, оптимальное количество и последовательность переходов, а также место термической обработки в технологическом процессе, приступают к формированию оптимальных операций обработки на станках с учетом ограничений.

Задача формирования оптимальных операций носит многовариантный характер, и область решений можно ограничить двумя предельными случаями: каждый переход соответствует однопереходной операции; все переходы выполняются в одной операции [35].

Перед началом решения задачи общую совокупность переходов U распределяют на подмножества при выполнении ограничений (см. таблицу 12.1). Каждый столбец соответствует маршруту обработки поверхности изделия. В случае отсутствия того или иного перехода ячейки массива не заполняют (ставят 0).

Двойными линиями в таблице показано возможное разделение общей совокупности переходов U на подмножества U'. Общую совокупность переходов, входящих в множество U и расположенных в некоторой фиксированной последовательности, обозначают числами 1, 2, ..., k, ..., t, ..., m, ..., Р, которые соответствуют (кроме Р ) промежуточным номерам переходов; Р — номер последнего перехода, равный общему количеству переходов в множестве U.

Необходимо распределить имеющиеся переходы по операциям так, чтобы значение целевой функции (например, себестоимости выполнения операции С_{on} ) конкретного варианта было минимальным.

Образование вариантов операций начинают с объединения в операцию максимального количества переходов. Такой подход позволяет резко сократить число анализируемых вариантов [64].

Для сужения области поиска оптимального варианта сочетаний используют критерий отбора, который позволяет исключить из рассмотрения часть вариантов.

На первом этапе отбора выявляют технологические возможные варианты с учетом ограничений, накладываемых на последовательность обработки, минимального количества переустановок и технологических возможностей оборудования.

На следующем этапе проектирования, когда вариант сформирован для конкретной модели станка, он проверяется на условие выполнения ограничений по точности обработки и шероховатости поверхности.

Если вариант выполнен, вычисляется соответствующая ему величина целевой функции. Расчет продолжается до тех пор, пока все переходы не будут распределены по операциям и не будет найдено значение целевой функции. Когда получат результаты расчетов по двум шагам (итерациям), их необходимо сравнить и выбрать лучший. Если последний вариант хуже предпоследнего, то на основании правила доминирования расчет прекращают.

Таблица 12.1.
№ Обрабатываемой поверхности изделия № Обрабатываемой поверхности изделия
1 2 1 n
11 12 i 1n 1 1 0 1
21 22 2i 2n
M 0 m m
K1 k2 ki kn P 0 Pi Pn

В случае улучшения варианта расчет продолжают до получения оптимального. Тогда на месте худшего формируют новый вариант. Правило доминирования заключается в том, что дальнейшее уменьшение количества переходов в операции приводит к увеличению количества операций и росту затрат времени и технологической себестоимости обработки. Варианты формирования операций обработки по изложенной методике оценивают по приведенным затратам. Таким образом, если известен технологический маршрут обработки детали, то возможна его корректировка по составу и содержанию отдельных операций, а также по виду используемого оборудования.

12.3. Общий алгоритм проектирования операционной технологии

Рассмотрим общий алгоритм проектирования операционной технологии [61].

В соответствии с характером решаемых задач и структурой критерия оптимальности проектирования синтез технологических операций расчленяется на четыре составные части (рис. 12.1). В первой определяются наиболее рациональные форма, припуски, допуски и межоперационные размеры изделия, поступившего на операцию, т. е. состояние С_{q-1}.

Вторая часть алгоритмов связана с выбором элементов системы обработки поверхности изделия (модели оборудования, приспособления, основного, вспомогательного и измерительного инструментов) и пространственной компоновкой инструментальной наладки оборудования.

Общий алгоритм проектирования операционной технологии

Рис. 12.1. Общий алгоритм проектирования операционной технологии

Алгоритмы третьей части осуществляют синтез временной структуры операции, т. е. уточняют состав переходов, определяют порядок их выполнения и характер совмещения во времени.

В четвертую часть входят алгоритмы определения параметров и технико-экономических характеристик операции.

Для простых операций ряд алгоритмов может отсутствовать. Например, в однопереходной операции алгоритм определения последовательности выполнения переходов опускается, а в некоторых операциях не нужны алгоритмы формирования инструментальных наладок и распределения переходов по позициям. Эти особенности учитываются при установлении структурного состава алгоритмов проектирования конкретных операций. Управляющим алгоритмом из общей схемы исключаются или добавляются те или иные алгоритмы в зависимости от назначения и целей, достигаемых в каждом конкретном случае.

Результатом автоматизированного проектирования является индивидуальный ТП, оформленный в виде маршрутной карты, в которой содержатся сведения о порядке выполнения операций и переходов, об оборудовании и оснастке, о режимах отдельных технологических операций и ряд других сведений, используемых для организации изготовления РЭА.

Итак, мы рассмотрели три уровня для автоматизированных систем проектирования ТП:

  • проектирование принципиальной схемы;
  • проектирование технологического маршрута;
  • проектирование операционной технологии.

Процесс проектирования идет от уровня к уровню и на каждом уровне является итерационным с накоплением опыта, обобщением и корректировкой на каждом уровне (рис. 12.2).

Эти результаты можно использовать для разработки типовых, групповых алгоритмов и технологических процессов-аналогов.

Операцией "обобщение" накопленного опыта из числа ранее спроектированных ТП формируются типовые проектные решения, типовые и групповые алгоритмы. Улучшается значение эвристических критериев самоотбора, совершенствуются структура и параметры алгоритмов синтеза, анализа и оптимизации. Обобщение накопленного опыта проводится в режиме человеко-машинного проектирования с оперативным отображением процессов-аналогов на экраны дисплеев.

В результате обучения и самообучения алгоритмы синтеза проектных решений и эвристические критерии промежуточного самоотбора становятся более эффективными. Вместо генерирования большого числа возможных вариантов — целенаправленно, с учетом положительного прошлого опыта синтезируется меньшее количество наиболее перспективных проектных решений (вариантов). За счет улучшения значений эвристических критериев в процессе самообучения на каждой промежуточной стадии отбирается для дальнейшего проектирования меньшее, чем прежде, число наиболее рациональных вариантов [106].

Модель автоматизированной сисемы проектирования с накопителем и обобщением опыта проектирования на каждом уровне

увеличить изображение
Рис. 12.2. Модель автоматизированной сисемы проектирования с накопителем и обобщением опыта проектирования на каждом уровне

Следовательно, контур самообучения, работающий на основе использования опыта проектирования, позволяет повысить качество проектных решений и резко сократить затраты машинного времени.

В результате целенаправленного синтеза и промежуточного отбора на каждом уровне генерируются не все возможные варианты, а только наиболее перспективные. Они могут иметь недостатки, которые выявляются с помощью операций анализа и оценки, а затем устраняются алгоритмами оптимизации.

Аналогичное положение наблюдается при автоматизации проектирования ТП-аналогов.

В результате приходим к необходимости организации итерационной модели процесса проектирования, основной чертой которой является последовательное улучшение исходного варианта до требуемой степени совершенства.

На основании анализа конструкторско-технологической документации в процессе разработки алгоритмов проектирования создают фонд информации для автоматизированного проектирования ТП изготовления элементов РЭС; этот фонд дополняют в процессе функционирования САПР.

Контрольные вопросы и упражнения

  1. Что включает в себя операционная технология?
  2. Что необходимо знать для построения операции?
  3. Что включает в себя спроектированный с помощью ЭВМ маршрут?
  4. Какие факторы оказывают влияние на построение операций?
  5. Что входит в задачу формирования оптимальной операции?
  6. Какие исходные данные используются при проектировании с помощью ЭВМ ТП?
  7. Что является технологическими ограничениями, определяющими допустимые варианты ТП изготовления на предприятии?
  8. Чем определяется структура технологической операции?
  9. Как определяется число переходов в операции?
  10. Назовите технологические ограничения, определяющие допустимые варианты ТП изготовления на предприятии.
< Лекция 11 || Лекция 12: 12 || Лекция 13 >