Опубликован: 01.06.2007 | Уровень: специалист | Доступ: платный | ВУЗ: Московский государственный университет путей сообщения

Лекция 14: Нейросетевые модели пошаговой оптимизации, маршрутизации и тактических игр

< Лекция 13 || Лекция 14: 12345 || Лекция 15 >

14.5. Нейросетевой "подсказчик" в тактической игре

"Остап \dots подошел к одноглазому, сидевшему за первой доской, и передвинул королевскую пешку с клетки е2 на клетку е4".

И. Ильф, Е. Петров. "Двенадцать стульев"

Схема пошаговой оптимизации наилучшим образом ложится на схему игры, где последовательные действия одного или нескольких игроков приводят к успеху, обусловленному правилами.

Единичное действие, чаще всего называемое ходом, должно либо статистически, либо комбинационно приводить к увеличению "качества" или к уменьшению "штрафа" на пути к победе (или к поражению). И здесь большое значение имеет не только длительный анализ всех возможных продолжений, грозящий цейтнотом, но и огромный опыт и фактические знания, переродившиеся в интуицию и позволяющие действовать механически в условиях блиц-турнира. Следовательно, должны быть реализованы механизмы запоминания и извлечения опыта и знаний в пошаговых действиях. Основным средством такой реализации является нейросеть - как природная, так и искусственная.

Рассмотрим игру в шахматы. Аналогом пункта в транспортной сети здесь является позиция на шахматной доске, состоящей из 64 клеток. Каждая клетка может быть пустой или иметь значение символа занимаемой фигуры.

То есть каждая клетка i может принимать значение из множества \{  \varnothing , пешка \ белая, ладья \ белая, конь \ белый, слон \ белый, ферзь \ белый, король \ белый, пешка \ черная, ладья \ черная, конь \ черный, слон \ черный, ферзь \ черный, король \ черный\}. При этом позиции являются симметричными относительно цвета фигур. Игроку, прибегающему к услугам "подсказчика", главное - указать: "фигуры мои - фигуры противника". Играть можно "самому с собой", как бы поворачивая доску после очередного хода. (Если "подсказчик" играет сам с собой, логично предположить, что такая игра всегда будет сводиться к ничьей?)

Тогда рецепторный слой однослойной логической нейронной сети должен состоять (рис. 14.6) из 64 групп нейронов. Каждая группа закреплена за одной клеткой и, в свою очередь, состоит из 13 нейронов-рецепторов. Каждый рецептор закреплен за одним из возможных значений клетки.

Нейросетевой  "подсказчик"

Рис. 14.6. Нейросетевой "подсказчик"

Ясно, что в подавляющем числе случаев значение клетки достаточно задавать с помощью единичного значения возбуждения единственного рецептора из тринадцати, соответствующих этой клетке. Так можно задавать позицию для определения следующего хода. Однако можно предусмотреть и неполную, предполагаемую с некоторой достоверностью информацию о значении клетки. Это справедливо, например, для случая игры "вслепую", тем более в сеансе одновременной игры, когда детали ситуации на отдельной доске могут быть забыты.

Целесообразно использовать приведенную выше целевую функцию с единичными синапсическими весами. Значения порогов несущественны; они могут быть положены равными нулю.

Комбинации возбуждения рецепторов должны приводить, в соответствии с непосредственными связями, к максимальному значению возбуждения того нейрона выходного слоя, с которым связан текст - рекомендация следующего хода. Текст может включать исторические ссылки, комментарии, мультимедийные эффекты и др.

Как говорилось, возможно попеременное обращение игроков к нейросети-"подсказчику". Тогда все нечетные обращения соответствуют белым, черные - черным. Однако интереснее игра живого шахматиста с компьютером.

Конечно, анализ колоссального опыта гроссмейстеров и литературы по теории шахмат не способен по всем возможным ситуациям и для белых и (симметрично) для черных определить абсолютно правильные ходы.

Да и объем информации колоссален! Останутся шахматные позиции без рекомендаций. Здесь необходимо исследовать, насколько указание нейрона, наиболее возбудившегося, может быть принято в качестве совета, - то есть насколько это хотя бы статистически соответствует правильному решению или, по крайней мере, не приводит к снижению качества. Следует ли "учить" нейросеть решению по данной комбинации или достаточно использовать ее способности ассоциативного мышления?

На этом пути может производиться совершенствование "подсказчика", что повышает интерес именно игры человека с машиной.

< Лекция 13 || Лекция 14: 12345 || Лекция 15 >
Эльвира Герейханова
Эльвира Герейханова

Раньше это можно было зделать просто нажав на тест и посмотреть результаты а сейчас никак

Елена Лобынцева
Елена Лобынцева
Помогите разобраться как можно подобрать НС для распознавания внутренней области выпуклого многоугольника?
Дмитрий Степанов
Дмитрий Степанов
Россия, Москва, МГТУ им. Баумана, 2006
Дмитрий Степаненко
Дмитрий Степаненко
Россия