Спонсор: Intel
Опубликован: 23.08.2014 | Уровень: для всех | Доступ: платный | ВУЗ: Северный (Арктический) федеральный университет им. М.В. Ломоносова
Лекция 4:

Биометрические системы информационной безопасности на основе Intel Perceptual Computing SDK

Презентацию к данной лекции можно скачать здесь.

Простая идентификация личности. Комбинация параметров лица, голоса и жестов для более точной идентификации. Интеграция возможностей модулей Intel Perceptual Computing SDK для реализации многоуровневой системы информационной безопасности, основанной на биометрической информации.

В данной лекции дается введение в предмет биометрических систем защиты информации, рассматривается принцип действия, методы и применение на практике. Обзор готовых решений и их сравнение. Рассматриваются основные алгоритмы идентификации личности. Возможности SDK по созданию биометрических методов защиты информации.

4.1. Описание предметной области

Существует большое разнообразие методов идентификации и многие из них получили широкое коммерческое применение. На сегодняшний день в основе наиболее распространенных технологий верификации и идентификации лежит использование паролей и персональных идентификаторов (personal identification number - PIN) или документов типа паспорта, водительских прав. Однако такие системы слишком уязвимы и могут легко пострадать от подделки, воровства и других факторов. Поэтому все больший интерес вызывают методы биометрической идентификации, позволяющие определить личность человека по его физиологическим характеристикам путем распознания по заранее сохраненным образцам.

Диапазон проблем, решение которых может быть найдено с использованием новых технологий, чрезвычайно широк:

  • предотвратить проникновение злоумышленников на охраняемые территории и в помещения за счет подделки, кражи документов, карт, паролей;
  • ограничить доступ к информации и обеспечить персональную ответственность за ее сохранность;
  • обеспечить допуск к ответственным объектам только сертифицированных специалистов;
  • процесс распознавания, благодаря интуитивности программного и аппаратного интерфейса, понятен и доступен людям любого возраста и не знает языковых барьеров;
  • избежать накладных расходов, связанных с эксплуатацией систем контроля доступа (карты, ключи);
  • исключить неудобства, связанные с утерей, порчей или элементарным забыванием ключей, карт, паролей;
  • организовать учет доступа и посещаемости сотрудников.

Кроме того, важным фактором надежности является то, что она абсолютно никак не зависит от пользователя. При использовании парольной защиты человек может использовать короткое ключевое слово или держать бумажку с подсказкой под клавиатурой компьютера. При использовании аппаратных ключей недобросовестный пользователь будет недостаточно строго следить за своим токеном, в результате чего устройство может попасть в руки злоумышленника. В биометрических же системах от человека не зависит ничего. Еще одним фактором, положительно влияющим на надежность биометрических систем, является простота идентификации для пользователя. Дело в том, что, например, сканирование отпечатка пальца требует от человека меньшего труда, чем ввод пароля. А поэтому проводить эту процедуру можно не только перед началом работы, но и во время ее выполнения, что, естественно, повышает надежность защиты. Особенно актуально в этом случае использование сканеров, совмещенных с компьютерными устройствами. Так, например, есть мыши, при использовании которых большой палец пользователя всегда лежит на сканере. Поэтому система может постоянно проводить идентификацию, причем человек не только не будет приостанавливать работу, но и вообще ничего не заметит. В современном мире, к сожалению, продается практически все, в том числе и доступ к конфиденциальной информации. Тем более что человек, передавший идентификационные данные злоумышленнику, практически ничем не рискует. Про пароль можно сказать, что его подобрали, а про смарт-карту, что ее вытащили из кармана. В случае же использования биометрической защиты подобной ситуации уже не произойдет.

Выбор отраслей, наиболее перспективных для внедрения биометрии, с точки зрения аналитиков, зависит, прежде всего, от сочетания двух параметров: безопасности (или защищенности) и целесообразности использования именно этого средства контроля или защиты. Главное место по соответствию этим параметрам, бесспорно, занимают финансовая и промышленная сфера, правительственные и военные учреждения, медицинская и авиационная отрасли, закрытые стратегические объекты. Данной группе потребителей биометрических систем безопасности в первую очередь важно не допустить неавторизованного пользователя из числа своих сотрудников к неразрешенной для него операции, а также важно постоянно подтверждать авторство каждой операции. Современная система безопасности уже не может обходиться не только без привычных средств, гарантирующих защищенность объекта, но и без биометрии. Также биометрические технологии используются для контроля доступа в компьютерных, сетевых системах, различных информационных хранилищах, банках данных и др.

Биометрические методы защиты информации становятся актуальней с каждым годом. С развитием техники: сканеров, фото и видеокамер спектр задач, решаемых с помощью биометрии, расширяется, а использование методов биометрии становится популярнее. Например, банки, кредитные и другие финансовые организации служат для их клиентов символом надежности и доверия. Чтобы оправдать эти ожидания, финансовые институты все больше внимание уделяют идентификации пользователей и персонала, активно применяя биометрические технологии. Некоторые варианты использования биометрических методов:

  • надежная идентификация пользователей различных финансовых сервисов, в т.ч. онлайновых и мобильных (преобладает идентификация по отпечаткам пальцев, активно развиваются технологии распознавания по рисунку вен на ладони и пальце и идентификация по голосу клиентов, обращающихся в колл-центры);
  • предотвращение мошенничеств и махинаций с кредитными и дебетовыми картами и другими платежными инструментами (замена PIN-кода распознаванием биометрических параметров, которые невозможно похитить, "подсмотреть", клонировать);
  • повышение качества обслуживания и его комфорта (биометрические банкоматы);
  • контроль физического доступа в здания и помещения банков, а также к депозитарным ячейкам, сейфам, хранилищам (с возможностью биометрической идентификации, как сотрудника банка, так и клиента-пользователя ячейки);
  • защита информационных систем и ресурсов банковских и других кредитных организаций.

4.2. Биометрические системы защиты информации

Биометрические системы защиты информации - системы контроля доступа, основанные на идентификации и аутентификации человека по биологическим признакам, таким как структура ДНК, рисунок радужной оболочки глаза, сетчатка глаза, геометрия и температурная карта лица, отпечаток пальца, геометрия ладони. Также эти методы аутентификации человека называют статистическими методами, так как основаны на физиологических характеристиках человека, присутствующих от рождения и до смерти, находящиеся при нем в течение всей его жизни, и которые не могут быть потеряны или украдены. Часто используются еще и уникальные динамические методы биометрической аутентификации - подпись, клавиатурный почерк, голос и походка, которые основаны на поведенческих характеристиках людей.

Понятие "биометрия" появилось в конце девятнадцатого века. Разработкой технологий для распознавания образов по различным биометрическим характеристикам начали заниматься уже достаточно давно, начало было положено в 60-е годы прошлого века. Значительных успехов в разработке теоретических основ этих технологий добились наши соотечественники. Однако практические результаты получены в основном на западе и совсем недавно. В конце двадцатого века интерес к биометрии значительно вырос благодаря тому, что мощность современных компьютеров и усовершенствованные алгоритмы позволили создать продукты, которые по своим характеристикам и соотношению стали доступны и интересны широкому кругу пользователей. Отрасль науки нашла свое применение в разработках новых технологий безопасности. Например, биометрическая система может контролировать доступ к информации и хранилищам в банках, ее можно использовать на предприятиях, занятых обработкой ценной информации, для защиты ЭВМ, средств связи и т. д.

Суть биометрических систем сводится к использованию компьютерных систем распознавания личности по уникальному генетическому коду человека. Биометрические системы безопасности позволяют автоматически распознавать человека по его физиологическим или поведенческим характеристикам.

Сегментация биометричесого рынка по методам идентификации

Рис. 4.1. Сегментация биометричесого рынка по методам идентификации

Описание работы биометрических систем:

Все биометрические системы работают по одинаковой схеме. Вначале, происходит процесс записи, в результате которого система запоминает образец биометрической характеристики. Некоторые биометрические системы делают несколько образцов для более подробного запечатления биометрической характеристики. Полученная информация обрабатывается и преобразуется в математический код. Биометрические системы информационной безопасности используют биометрические методы идентификации и аутентификации пользователей. Идентификация по биометрической системы проходит в четыре стадии:

  • Регистрация идентификатора - сведение о физиологической или поведенческой характеристике преобразуется в форму, доступную компьютерным технологиям, и вносятся в память биометрической системы;
  • Выделение - из вновь предъявленного идентификатора выделяются уникальные признаки, анализируемые системой;
  • Сравнение - сопоставляются сведения о вновь предъявленном и ранее зарегистрированном идентификаторе;
  • Решение - выносится заключение о том, совпадают или не совпадают вновь предъявленный идентификатор.

Заключение о совпадении/несовпадении идентификаторов может затем транслироваться другим системам (контроля доступа, защиты информации и т. д), которые далее действуют на основе полученной информации.

Одна из самых важных характеристик систем защиты информации, основанных на биометрических технологиях, является высокая надежность, то есть способность системы достоверно различать биометрические характеристики, принадлежащие разным людям, и надежно находить совпадения. В биометрии эти параметры называются ошибкой первого рода (False Reject Rate, FRR) и ошибкой второго рода (False Accept Rate, FAR). Первое число характеризует вероятность отказа доступа человеку, имеющему доступ, второе - вероятность ложного совпадения биометрических характеристик двух людей. Подделать папиллярный узор пальца человека или радужную оболочку глаза очень сложно. Так что возникновение "ошибок второго рода" (то есть предоставление доступа человеку, не имеющему на это право) практически исключено. Однако, под воздействием некоторых факторов биологические особенности, по которым производится идентификация личности, могут изменяться. Например, человек может простудиться, в результате чего его голос поменяется до неузнаваемости. Поэтому частота появлений "ошибок первого рода" (отказ в доступе человеку, имеющему на это право) в биометрических системах достаточно велика. Система тем лучше, чем меньше значение FRR при одинаковых значениях FAR. Иногда используется и сравнительная характеристика EER (Equal Error Rate), определяющая точку, в которой графики FRR и FAR пересекаются. Но она далеко не всегда репрезентативна. При использовании биометрических систем, особенно системы распознавания по лицу, даже при введении корректных биометрических характеристик не всегда решение об аутентификации верно. Это связано с рядом особенностей и, в первую очередь, с тем, что многие биометрические характеристики могут изменяться. Существует определенная степень вероятности ошибки системы. Причем при использовании различных технологий ошибка может существенно различаться. Для систем контроля доступа при использовании биометрических технологий необходимо определить, что важнее не пропустить "чужого" или пропустить всех "своих".

График зависимости надежности системы от удобства использования

Рис. 4.2. График зависимости надежности системы от удобства использования

Не только FAR и FRR определяют качество биометрической системы. Если бы это было только так, то лидирующей технологией было бы распознавание людей по ДНК, для которой FAR и FRR стремятся к нулю. Но ведь очевидно, что эта технология не применима на сегодняшнем этапе развития человечества. Поэтому важной характеристикой является устойчивость к муляжу, скорость работы и стоимость системы. Не стоит забывать и то, что биометрическая характеристика человека может изменяться со временем, так что если она неустойчива - это существенный минус. Также важным фактором для пользователей биометрических технологий в системах безопасности является простота использования. Человек, характеристики которого сканируются, не должен при этом испытывать никаких неудобств. В этом плане наиболее интересным методом является, безусловно, технология распознавания по лицу. Правда, в этом случае возникают иные проблемы, связанные в первую очередь, с точностью работы системы.

Обычно биометрическая система состоит из двух модулей: модуль регистрации и модуль идентификации.

Модуль регистрации "обучает" систему идентифицировать конкретного человека. На этапе регистрации видеокамера или иные датчики сканируют человека для того, чтобы создать цифровое представление его облика. В результате сканирования чего формируются несколько изображений. В идеальном случае, эти изображения будут иметь слегка различные ракурсы и выражения лица, что позволит получить более точные данные. Специальный программный модуль обрабатывает это представление и определяет характерные особенности личности, затем создает шаблон. Существуют некоторые части лица, которые практически не изменяются с течением времени, это, например, верхние очертания глазниц, области окружающие скулы, и края рта. Большинство алгоритмов, разработанных для биометрических технологий, позволяют учитывать возможные изменения в прическе человека, так как они не используют для анализа области лица выше границы роста волос. Шаблон изображения каждого пользователя хранится в базе данных биометрической системы.

Модуль идентификации получает от видеокамеры изображение человека и преобразует его в тот же цифровой формат, в котором хранится шаблон. Полученные данные сравниваются с хранимым в базе данных шаблоном для того, чтобы определить, соответствуют ли эти изображения друг другу. Степень подобия, требуемая для проверки, представляет собой некий порог, который может быть отрегулирован для различного типа персонала, мощности PC, времени суток и ряда иных факторов.

Идентификация может выполняться в виде верификации, аутентификации или распознавания. При верификации подтверждается идентичность полученных данных и шаблона, хранимого в базе данных. Аутентификация - подтверждает соответствие изображения, получаемого от видеокамеры одному из шаблонов, хранящихся в базе данных. При распознавании, если полученные характеристики и один из хранимых шаблонов оказываются одинаковыми, то система идентифицирует человека с соответствующим шаблоном.

4.3. Обзор готовых решений

4.3.1. ИКАР Лаб: комплекс криминалистического исследования фонограмм речи

Аппаратно-программный комплекс ИКАР Лаб предназначен для решения широкого круга задач анализа звуковой информации, востребованного в специализированных подразделениях правоохранительных органов, лабораториях и центрах судебной экспертизы, службах расследования летных происшествий, исследовательских и учебных центрах. Первая версия продукта была выпущена в 1993 году и явилась результатом совместной работы ведущих аудиоэкспертов и разработчиков программного обеспечения. Входящие в состав комплекса специализированные программные средства обеспечивают высокое качество визуального представления фонограмм речи. Современные алгоритмы голосовой биометрии и мощные инструменты автоматизации всех видов исследования фонограмм речи позволяют экспертам существенно повысить надежность и эффективность экспертиз. Входящая в комплекс программа SIS II обладает уникальными инструментами для идентификационного исследования: сравнительное исследование диктора, записи голоса и речи которого предоставлены на экспертизу и образцов голоса и речи подозреваемого. Идентификационная фоноскопическая экспертиза основывается на теории уникальности голоса и речи каждого человека. Анатомическое факторы: строение органов артикуляции, форма речевого тракта и ротовой полости, а также внешние факторы: навыки речи, региональные особенности, дефекты и др.

Биометрические алгоритмы и экспертные модули позволяют автоматизировать и формализовать многие процессы фоноскопического идентификационного исследования, такие как поиск одинаковых слов, поиск одинаковых звуков, отбор сравниваемых звуковых и мелодических фрагментов, сравнение дикторов по формантам и основному тону, аудитивные и лингвистические типы анализа. Результаты по каждому методу исследования представляются в виде численных показателей общего идентификационного решения.

Интерфейс программы SIS II

увеличить изображение
Рис. 4.3. Интерфейс программы SIS II

Программа состоит из ряда модулей, с помощью которых производится сравнение в режиме "один-к-одному". Модуль "Сравнения формант" основан на термине фонетики - форманте, обозначающий акустическую характеристику звуков речи (прежде всего гласных), связанную с уровнем частоты голосового тона и образующую тембр звука. Процесс идентификации с использованием модуля "Сравнения формант" может быть разделен на два этапа: cначала эксперт осуществляет поиск и отбор опорных звуковых фрагментов, а после того как опорные фрагменты для известного и неизвестного дикторов набраны, эксперт может начать сравнение. Модуль автоматически рассчитывает внутридикторскую и междикторскую вариативность формантных траекторий для выбранных звуков и принимает решение о положительной/отрицательной идентификации или неопределенном результате. Также модуль позволяет визуально сравнить распределения выбранных звуков на скаттерограмме.

Модуль "Сравнение Основного Тона" позволяет автоматизировать процесс идентификации дикторов с помощью метода анализа мелодического контура. Метод предназначен для сравнения речевых образцов на основе параметров реализации однотипных элементов структуры мелодического контура. Для анализа предусмотрено 18 типов фрагментов контура и 15 параметров их описания, включая значения минимума, среднего, максимума, скорости изменения тона, эксцесса, скоса и др. Модуль возвращает результаты сравнения в виде процентного совпадения для каждого из параметров и принимает решение о положительной/отрицательной идентификации или неопределенном результате. Все данные могут экспортироваться в текстовый отчет.

Пример работы модуля "Сравнение Основного Тона"

увеличить изображение
Рис. 4.4. Пример работы модуля "Сравнение Основного Тона"

Модуль автоматической идентификации позволяет производить сравнение в режиме "один-к-одному" с использованием алгоритмов:

  • Спектрально-форматный;
  • Статистика основного тона;
  • Смесь Гауссовых распределений;

Вероятности совпадения и различия дикторов рассчитываются не только для каждого из методов, но и для их совокупности. Все результаты сравнения речевых сигналов двух файлах, получаемые в модуле автоматической идентификации, основаны на выделении в них идентификационно значимых признаков и вычислении меры близости между полученными наборами признаков и вычислений меры близости полученных наборов признаков между собой. Для каждого значения этой меры близости во время периода обучения модуля автоматического сравнения были получены вероятности совпадения и различия дикторов, речь которых содержалась в сравниваемых файлах. Эти вероятности были получены разработчиками на большой обучающей выборке фонограмм: десятки тысяч дикторов, различные каналы звукозаписи, множество сессий звукозаписи, разнообразный тип речевого материала. Применение статистических данных к единичному случаю сравнения файл-файл требует учета возможного разброса получаемых значений меры близости двух файлов и соответствующей ей вероятности совпадения/различия дикторов в зависимости от различных деталей ситуации произнесения речи. Для таких величин в математической статистике предложено использовать понятие доверительного интервала. Модуль автоматического сравнения выводит численные результаты с учетом доверительных интервалов различных уровней, что позволяет пользователю увидеть не только среднюю надежность метода, но и наихудший результат, полученный на обучающей базе. Высокая надежность биометрического движка, разработанного компанией ЦРТ, была подтверждена испытаниями NIST (National Institute of Standards and Technology)

Помимо идентификационных методов программа имеет средства для визуализации, редактирования и обработки сигналов.

Визуализация спектрального представления сигнала

увеличить изображение
Рис. 4.5. Визуализация спектрального представления сигнала

Демо-версия программы может быть скачана по ссылке http://www.speechpro.ru/product/analysis/criminalistic/ikarlab/docs#product-files

Достоинства программы:

  • Множество алгоритмов для идентификационного исследования;
  • Широкой набор параметров и настроек для максимизации эффективности;
  • Высокая надежность биометрического движка;

Недостатки программы:

  • Сравнение происходит в режим "один-к-одному";
  • Для эффективной работы с программой требуется квалифицированный специалист;
  • Некоторые методы сравнения являются полуавтоматическими (лингвистический и аудитивный анализы)

Дмитрий Юнушкин
Дмитрий Юнушкин

В лабораторной работе №2 (идентификация лица) сказано:

в FaceTracking.cs: удалим или закомментируем функцию SimplePipelineкласс MyUtilMPipeline и изменим функцию AdvancedPipeline...

Класса MyUtilMPipeline  нет в проекте вообще;

Функции AdvancedPipeline так же нет. Материалов к лабораторной  №2 в начале работы (по ссылке открывается та же страница) тоже нет.Это ошибки или используется другая версия примера?

Анатолий Федоров
Анатолий Федоров
Россия, Москва, Московский государственный университет им. М. В. Ломоносова, 1989
Дмитрий Юнушкин
Дмитрий Юнушкин
Россия, г. Пенза