Опубликован: 20.08.2013 | Уровень: для всех | Доступ: платный | ВУЗ: Новосибирский Государственный Университет
  • 1.
    Otsu N.
    A threshold selection method from gray-level histogram
  • 2.
    Дж. Стокман, Л. Шапиро
    Компьютерное зрение
  • 3.
    K., S. and Abe, Suzuki
    Topological Structural Analysis of Digitized Binary Images by Border Following.
  • 4.
    Canny.
    A Computational Approach to Edge Detection
  • 5.
    Shi and C. Tomasi.
    Good Features to Track
  • 6.
    Bishop C. M.
    Pattern Recognition and Machine Learning
  • 7.
    Breiman L.
    Random Forests
  • 8.
    Breiman L., Friedman J.H., Olshen R.A., Stone C.J. Classi
    Classification and Regression Trees
  • 9.
    Cortes C., Vapnik V. N.
    Support-Vector Networks
  • 10.
    Freund Y., Schapire R. A
    Decision-Theoretic Generalization of Online Learning and an Application to Boosting
  • 11.
    Friedman J. H.
    Greedy Function Approximation: a Gradient Boosting Machine. Technical report
  • 12.
    Friedman J. H.
    Stochastic Gradient Boosting. Technical report.
  • 13.
    Friedman J., Hastie T., Tibshirani R.
    The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  • 14.
    Mitchell T.
    Machine Learning
  • 15.
    Samuel A.
    Some Studies in Machine Learning Using the Game of Checkers
  • 16.
    Agrawal R., Srikant R. (19
    Fast algorithms for mining association rules in large databases
  • 17.
    Alkhalid A, Chikalov I, Hussain S, Moshkov M
    Extensions of dynamic programming as a new tool for decision tree optimization
  • 18.
    Alkhalid A, Chikalov I, Moshkov M
    On algorithm for building of optimal ?-decision trees.
  • 19.
    Alonso D., Nieto M., Saldaro L.
    Robust Vehicle Detection through Multidimensional Classification for On Broad Video Based Systems
  • 20.
    Amit Y.
    2D Object Detection and Recognition: models, algorithms and networks
  • 21.
    Andrews S., Hofmann T., Tsochantaridis I.
    Support vector machines for multiple-instance learning
  • 22.
    Alpaslan F., Apolloni B., Ghosh A., Jain L.C., Patnaik S.
    Machine Learning and Robot Perception.
  • 23.
    Arrospide J., Jaureguizar F., Nieto M., Salgado L.
    Robust vehicle detection through multidimensional classification for on board video based systems
  • 24.
    Arndt R., Lhlein O., Paulus D., Schweiger R. Ritter W.
    Detection and tracking of multiple pedestrians in automotive applications
  • 25.
    Arth C., Bischof H., Limberger F.
    Real-Time License Plate Recognition on an Embedded DSP-Platform
  • 26.
    Aldrich C., Aureta L.
    Empirical comparison of tree ensemble variable importance measures
  • 27.
    Ballard D.H., Brown C.M.
    Computer Vision
  • 28.
    Bauer E., Kohavi R.
    An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
  • 29.
    Bay H., Ess A., Gool L.V., Tuytelaars T.
    SURF: speed up robust features
  • 30.
    Bertozzi M., Broggi A., Chapuis R., Chausse F., Fascioli A., Tibaldi A.
    Pedestrin localization and tracking system with Kalman filtering
  • 31.
    Binelli E., Broggi A., Fascioli A., Ghidoni S., Graf T., Grisleri P., Meinecke M.-M.
    A modular tracking system for far infrared pedestrian recognition
  • 32.
    Boryczka U, Kozak J
    New algorithms for generation decision trees - Ant-Miner and its modifications
  • 33.
    Bosch A., Munoz X., Zisserman A.
    Image classification using random forests and ferns
  • 34.
    Bradski G., Kaehler A.
    Learning OpenCV Computer Vision with OpenCV Library
  • 35.
    Breiman L.
    Random Forests
  • 36.
    Breiman L., Friedman J.H., Olshen R.A., Stone C.J.
    Classification and Regression Trees
  • 37.
    Calonder M., Fua P., Lepetit V., Strecha C.
    BRIEF: Binary Robust Independent Elementary Features
  • 38.
    Chikalov I
    Algorithm for constructing of decision trees with minimal number of nodes
  • 39.
    Chikalov I, Moshkov M, Zielosko B
    Online learning algorithm for ensemble of decision rules
  • 40.
    Comaniciu D., Meer P., Ramesh V.
    Real-time tracking of non-rigid objects using mean shift
  • 41.
    Dalal N., Triggs B.
    Histograms of oriented gradients for human detection
  • 42.
    Bray C., Csurka G., Dance C., Fan L., Willamowski J.
    Visual categorization with bags of keypoints
  • 43.
    Berg A., Deng J., Fei-Fei L.
    Hierarchical Semantic Indexing for Large Scale Image Retrieval
  • 44.
    Berg A., Deng J., Fei-Fei L., Li K.
    What does classifying more than 10,000 image categories tell us?
  • 45.
    Deng J., Dong W., Fei-Fei L., Li K., Li L., Socher R.
    ImageNet: A large-scale hierarchical image database
  • 46.
    Belongie S., Dollar P., Perona P.
    The fastest pedestrian detector in the west
  • 47.
    Dollar P., Perona P., Schiele B., Wojek C.
    Pedestrian Detection: An Evaluation of the State of the Art
  • 48.
    Druzhkov P. N., Eruhimov V. L., Kozinov E. A., Kustikova V. D., Meyerov I. B., Polovinkin A. N., Zolotykh N. Yu.
    On some new object detection features in OpenCV Library
  • 49.
    Duda R.O., Hart P.E., Stork D.G.
    Pattern classification (2nd edition).
  • 50.
    Enzweiler M., Gavrila D. M.
    Monocular Pedestrian Detection: Survey and Experiments
  • 51.
    Ewens W.J., Grant G.
    Grant Statistical Methods in Bioinformatics: An Introduction
  • 52.
    Bruns E., Exner D., Grundhofer A., Kurz D.
    Fast and robust CAMShift tracking
  • 53.
    Fellbaum C.
    WordNet: An Electronic Lexical Database
  • 54.
    Felzenszwalb P. F., Girshick R. B., McAllester D., Ramanan D.
    Object Detection with Discriminatively Trained Part Based Models
  • 55.
    Felzenszwalb P. F., Girshick R. B., McAllester D., Ramanan D.
    Cascade object detection with deformable path model
  • 56.
    Asuncion A, Frank A
  • 57.
    Franke U., Joss A.
    Real-time stereo vision for urban traffic scene understanding
  • 58.
    Adelson E., Freeman W.
    The design and use of steerable filters
  • 59.
    Freund Y., Schapire R.
    A decision-theoretic generalization of online learning and an application to boosting
  • 60.
    Friedman J.
    Greedy function approximation: the gradient boosting machine
  • 61.
    Friedman J. H.
    Greedy Function Approximation: a Gradient Boosting Machine. Technical report
  • 62.
    Friedman J. H.
    Stochastic Gradient Boosting. Technical report.
  • 63.
    Friedman J.H., Popescu B.E.
    Importance Sampled Learning Ensembles
  • 64.
    Gavrila D. M., Giebel J., Munder S.
    Vision-based pedestrian detection: the protector system
  • 65.
    Gavrila D.M.
    Pedestrian detection from a moving vehicle
  • 66.
    Geronimo D.
    A Global Approach to Vision Based Pedestrian Detection for Advanced Driver Assistance Systems, PhD Thesis
  • 67.
    Darrell T., Grauman K.
    Pyramid match kernels: Discriminative classification with sets of image features
  • 68.
    Grubb G., Nilsson L., Rilbe M., Zelinsky A.
    3D vision sensing for improved pedestrian safety
  • 69.
    Grunwald PD
    The Minimum Description Length Principle
  • 70.
    Friedman J., Hastie T., Tibshirani R.
    The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  • 71.
    Armingol J.M., Collado J.M., Escalera A., Hilario C.
    Pyramidal Image Analysis for Vehicle Detection
  • 72.
    Hama H., Hirose K., Torio T.
    Robust Extraction of Wheel Region for Vehicle Position Estimation using a Circular Fisheye Camera
  • 73.
    Horn B., Schunk B.
    Determing Optical Flow
  • 74.
    Jensen R, Shen Q
    Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches
  • 75.
    Favaro P., Jin H., Soatto S.
    Real-time tracking and outlier rejection with changes in illumination
  • 76.
    Jurafsky D., Martin J.H.
    Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Second Edition
  • 77.
    Kalal Z., Matas J., Mikolajczyk K.
    Forward-backward error: automatic detection of tracking failures
  • 78.
    Birchfield S. T., Kanhere N. K., Pundlik S. J.
    Vehicle Segmentation and Tracking from a Low-Angle Off-Axis Camera
  • 79.
    Ke Y., Sukthankar R.
    PCA-SIFT: A more distinctive representation for local image descriptors
  • 80.
    Kilian Q. Weinberger, Lawrence K.
    Saul Distance Metric Learning for Large Margin Nearest Neighbor Classification
  • 81.
    Kim H.J., Kim J.B., Lee C.W., Lee K.M., Yun T.S.
    Wavelet-based Vehicle Tracking for Automatic Traffic Surveillance
  • 82.
    Lazebnik S., Ponce J., Schmid C.
    Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
  • 83.
    Chiu T.H., Hung Y.P., Lee P.H., Lin Y.L.
    Real-time pedestrian and vehicle detection in video using 3D cues
  • 84.
    Cornelis K., Cornelis N., Leibe B., Van Gool L.
    Dynamic 3D scene analysis from a moving vehicle
  • 85.
    Leibe B., Leonardis A., Schiele B.
    Robust Object Detection with Interleaved Object Categoization and Segmentation
  • 86.
    Leong C.W., Mihalcea R.
    Measuring the semantic relatedness between words and images
  • 87.
    Abbass HA, Liu B, McKay B
    Classification rule discovery with ant colony optimization
  • 88.
    Lowe D.
    Distinctive image features from scale-invariant keypoints
  • 89.
    Kanade T., Lucas B.D.
    An iterative image registration technique with an application to stereo vision
  • 90.
    Chum O., Matas J., PajdlaT., Urban M.
    Robust wide baseline stereo from maximally stable extremal regions
  • 91.
    Michalski SR, Pietrzykowski J
    iAQ: A program that discovers rules, AAAI-07 AI Video Competition
  • 92.
    Mikolajczyk K., Schmid C.
    A Performance Evaluation of Local Descriptors
  • 93.
    Mikolajczyk K., Schmid C.
    Scale and affine invariant interest point detectors
  • 94.
    Mitchell T.
    Machine Learning
  • 95.
    Chikalov I, Moshkov M
    On algorithm for constructing of decision trees with minimal depth
  • 96.
    Moshkov M, Piliszczuk M, Zielosko B
    Partial Covers, Reducts and Decision Rules in Rough Sets: Theory and Applications.
  • 97.
    Moshkov M, Zielosko B
    Combinatorial Machine Learning: A Rough Set Approach
  • 98.
    Gavrila D.M., Munder S.
    An experimental study on pedestrian classification
  • 99.
    A., A.S., J.J., Lim, Myung Jin Choi, Torralba, Willsky
    Exploiting Hierarchical Contex on a large database of object categories
  • 100.
    Neubeck A., Van Gool L. Ef
    Efficient Non-Maximum Supression
  • 101.
    Nguyen HS
    Approximate Boolean reasoning: foundations and applications in data mining
  • 102.
    Basu S., Bayardo R. J, Herbach J. S., Panda B.
    PLANET: Massively parallel learning of tree ensembles with MapReduce
  • 103.
    Huang Q., Jiang S, Pang J.
    Multiple instance boost using graph embedding based decision stump for pedestrian detection
  • 104.
    Papageorgiou C., Poggio T
    A trainable system for object detection
  • 105.
    Pawlak Z
    Rough Sets – Theoretical Aspects of Reasoning about Data
  • 106.
    Pawlak Z, Skowron A
    Rough sets and Boolean reasoning.
  • 107.
    Choudhury T, Pentland A.
    Face Recognition for Smart Environments
  • 108.
    Quinlan J.R
    Induction of decision trees
  • 109.
    Quinlan JR
    C4.5: Programs for Machine Learning
  • 110.
    Rissanen J
    Modeling by shortest data description.
  • 111.
    Drummond T, Rosten E.
    Machine Learning for high-speed corner detection
  • 112.
    Mori G, Sabzmeydani P.
    Detecting pedestrians by learning shapelet features
  • 113.
    Schapire R
    The boosting approach to machine learning. An overview
  • 114.
    Shi J., Tomasi C
    Good features to track
  • 115.
    Blake A., Cipolla R, Shotton J.
    Contour-based Learning for Object Detection
  • 116.
    Skowron A
    Rough sets in KDD
  • 117.
    Rauszer C, Skowron A
    The discernibility matrices and functions in information systems
  • 118.
    Slezak D, Wroblewski J
    rder-based genetic algorithms for the search of approximate entropy reducts
  • 119.
    Boyle R, Hlavac V., Sonka M.
    Image Processing, Analysis and Machine Vision
  • 120.
    Szeliski R
    Computer Vision: Algorithms and Applications
  • 121.
    Aggarwal J.K, Tamersoy B.
    Robust Vehicle Detection for Tracking in Highway Surveillance Videos using unsupervised Learning
  • 122.
    Fua P, Lepetit V., Tola E.
    A Fast Local Descriptor for Dense Matching
  • 123.
    Freeman W.T., Murphy K.P., Rubin M.A, Torralba A.
    Contex-based Vision System for Place and Object Recognition
  • 124.
    Mikolajczyk K, Tuytelaars T.
    Local Invariant Feature Detectors: A Survey
  • 125.
    Agrawal K., Paykin J, Tyree S., Weinberger K. Q.
    Parallel boosted regression trees for web search ranking
  • 126.
    Chandler D.M, Vasu L.
    Vehicle Tracking Using a Human-Vision-Based Model of Visual Similarity
  • 127.
    Jones M., Snow D, Viola P.
    Detecting pedestrians using patterns of motion and appearance
  • 128.
    Jones M.J, Viola P.
    Rapid object detection using a boosted cascade of simple features
  • 129.
    Jones M.J, Viola P.
    Robust Real-Time Face Detection
  • 130.
    Jones M.J., Snow D, Viola P.
    Detecting pedestrians using patterns of motion and appearance
  • 131.
    Majer N., Schiele B, Schindler K., Walk S.
    New features and insights for pedestrian detection
  • 132.
    Wallace CS
    Statistical and Inductive Inference by Minimum Message Length.
  • 133.
    Schiele B, Wojek C.
    A performance evaluation of single and multi-feature people detection
  • 134.
    Schiele B, Walk S., Wojek C.
    Multi-cue onboard pedestrian detection
  • 135.
    Wroblewski J
    Finding minimal reducts using genetic algorithm.
  • 136.
    Nevatia R, Wu B.
    Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors
  • 137.
    Frank E, Xu X.
    Logistic regression and boosting for labeled bags of instances
  • 138.
    Grossman R, Yike G.
    High Performance Data Mining: Scaling Algorithms, Applications and Systems
  • 139.
    Nevatia R, Wu B., Zhang L.
    Pedestrian detection in infrared images based on local shape features
  • 140.
    Bebis G., Miller R, Zehang Sun
    On-road vehicle detection using Gabor filters and support vector machines
  • 141.
    Avidan S., Cheng K, Yeh M., Zhu Q.
    Fast Human Detection Using a Cascade of Histograms of Oriented Gradients
  • 142.
    Chikalov I, Moshkov M, Zielosko B
    Optimization of decision rules based on methods of dynamic programming
  • 143.
    Вапник В.Н., Червоненкис А.Я
    Теория распознавания образов. Статистические проблемы обучения.
  • 144.
    Дружков П. Н., Золотых Н. Ю., Половинкин А. Н
    Параллельная реализация алгоритма предсказания с помощью модели градиентного бустинга деревьев решений
  • 145.
    Дружков П.Н., Золотых Н.Ю., Половинкин А.Н
    Программная реализация алгоритма градиентного бустинга деревьев решений
  • 146.
    Котов Ю.Б
    Новые математические подходы к задачам медицинской диагностики
  • 147.
    Понс Ж, Форсайт Д.
    Компьютерное зрение. Современный подход.
  • 148.
    Чубукова И. А
    Data Mining: учебное пособие
  • 149.
    A, and Zisserman, Fergus, P., Perona, R.
    A sparse object category model for efficient learning and exhaustive recognition.
  • 150.
    A, Fergus, P. and Zisserman, R. and Perona
    Object Class Recognition by Unsupervised Scale-Invariant Learning
  • 151.
    and Huttenlocher, Crandall, D, D., Felzenszwalb, P.
    Spatial priors for part-based recognition using statistical models
  • 152.
    D. P, Felzenszwalb, P. F. and Huttenlocher
    Pictorial structures for object recognition
  • 153.
    and Bray, C, C. R., Csurka, Dance, Fan, G., J., L., Willamowski
    Visual categorization with bags of keypoints
  • 154.
    B, Bouchard, G. and Triggs
    Hierarchical part-based visual object categorization
  • 155.
    Carneiro, D, G. and Lowe
    Sparse flexible models of local features
  • 156.
    Bishop, C. M
    Pattern Recognition and Machine Learning.
  • 157.
    Fischler, M. A. and Elschlager, R. A
    The representation and matching of pictorial structures.
  • 158.
    J. Winn and A. Criminisi, S. Savarese
    Discriminative Object Class Models of Appearance and Shape by Correlatons.
  • 159.
    Fei-Fei, J.C., L, Niebles
    A hierarchical model of shape and appearance for human action classification
  • 182.
    Bradski G., Kaehler A
    Learning OpenCV
  • 199.
    Jones M.J, Viola P.
    Robust Real-Time Face Detection
  • 200.
    Felzenszwalb P. F., Girshick R. B., McAllester D., Ramanan D
    Object Detection with Discriminatively Trained Part Based Models
  • 201.
    Понс Ж, Форсайт Д.
    Компьютерное зрение. Современный подход
  • 202.
    Abe K, Suzuki S.
    Topological Structural Analysis of Digitized Binary Images by Border Following
  • 203.
    Стокман Дж, Шапиро Л.
    Компьютерное зрение.
  • 204.
    Chin, Cho-Huak, Roland T, Teh
    On the detection of dominant points on digital curves
  • 205.
    Bradski G., Kaehler A
    Learning OpenCV Computer Vision with OpenCV Library
  • 206.
    Стокман Дж, Шапиро Л.
    Компьютерное зрение.
  • 207.
    Понс Ж, Форсайт Д.
    Компьютерное зрение. Современный подход
  • 208.
    Canny J
    A computational approach to edge detection
  • 217.
    Friedman J, Hastie T., Tibshirani R.
    The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  • 218.
    Breiman L., Friedman J.H., Olshen R.A., Stone C.J
    Classification and Regression Trees
  • 219.
    Druzhkov P.N., Eruhimov V.L., Kozinov E.A., Kustikova V.D., Meyerov I.B., Polovinkin A.N, Zolotykh N.Yu.
    New object detection features in the OpenCV Library
  • 220.
    Breiman L
    Random Forests
  • 221.
    Arthur D., Vassilvitskii S
    k-means++: the advantages of careful seeding
  • 224.
    Agrawal M., Blas M, Konolige K.
    Censure: Center surround extremas for realtime feature detection and matching
  • 225.
    Bay H., Ess A., Gool L.V, Tuytelaars T.
    SURF: speed up robust features
  • 226.
    Bradski G., Kaehler A
    Learning OpenCV Computer Vision with OpenCV Library
  • 227.
    Calonder M., Fua P, Lepetit V., Strecha C.
    BRIEF: Binary Robust Independent Elementary Features
  • 228.
    Friedman J, Hastie T., Tibshirani R.
    The Elements of Statistical Learning.
  • 229.
    Ke Y., Sukthankar R
    PCA-SIFT: A more distinctive representation for local image descriptors
  • 230.
    Lindeberg T
    Feature detection with automatic scale selection
  • 231.
    Lowe D. Di
    Distinctive image features from scale-invariant keypoints
  • 232.
    Chum O., Matas J., PajdlaT, Urban M.
    Robust wide baseline stereo from maximally stable extremal regions
  • 233.
    Mikolajczyk K., Schmid C
    Scale and affine invariant interest point detectors
  • 234.
    Drummond T, Rosten E.
    Machine Learning for high-speed corner detection
  • 235.
    Bradski G, Konolige K., Rabaud V., Rublee E.
    ORB: an efficient alternative to SIFT or SURF
  • 236.
    Szeliski R
    Computer Vision: Algorithms and Applications.
  • 244.
    Стокман Дж, Шапиро Л.
    Компьютерное зрение
  • 245.
    Boyle R, Hlavac V., Sonka M.
    Image Processing, Analysis and Machine Vision
  • 246.
    Intel®
  • 254.
    Кормен Т., Лейзерсон Ч., Ривест Р
    Алгоритмы. Построение и анализ.
  • 255.
    Coppersmith D., Winograd S, Касперски К
    Техника оптимизации программ. Эффективное использование памяти.
  • 256.
    Bik A.J.C., Gerber R., Smith K.B., Tian X
  • 258.
    Вудхалл А, Таненбаум Э.
  • 259.
    Hennessy J., Patterson D
  • 260.
    Понс Ж, Форсайт Д.
  • 261.
    Szeliski R, Мееров И.Б, Сиднев А.А., Сысоев А.В.
  • 262.
    Szeliski R, Мееров И.Б, Сиднев А.А., Сысоев А.В.
  • 263.
    Понс Ж, Форсайт Д.
  • 264.
    Hennessy J., Patterson D
  • 265.
    Вудхалл А, Таненбаум Э.
  • 267.
    Bik A.J.C., Gerber R., Smith K.B., Tian X
  • 268.
    Coppersmith D., Winograd S, Касперски К
    Matrix Multiplication via Arithmetic Progressions
Александра Максимова
Александра Максимова

При прохождении теста 1 в нем оказались вопросы, который во-первых в 1 лекции не рассматривались, во-вторых, оказалось, что вопрос был рассмаотрен в самостоятельно работе №2. Это значит, что их нужно выполнить перед прохождением теста? или это ошибка?
 

Алена Борисова
Алена Борисова

В лекции по обработке полутоновых изображений (http://www.intuit.ru/studies/courses/10621/1105/lecture/17979?page=2) увидела следующий фильтр:


    \begin{array}{|c|c|c|}
    \hline \\
    0 & 0 & 0 \\
    \hline \\
    0 & 2 & 0 \\
    \hline \\
    0 & 0 & 0 \\
    \hline 
    \end{array} - \frac{1}{9} \begin{array}{|c|c|c|}
    \hline \\
    0 & 0 & 0 \\
    \hline \\
    0 & 1 & 0 \\
    \hline \\
    0 & 0 & 0 \\
    \hline 
    \end{array}

В описании говорится, что он "делает изображение более чётким, потому что, как видно из конструкции фильтра, в однородных частях изображение не изменяется, а в местах изменения яркости это изменение усиливается".

Что вижу я в конструкции фильтра (скорее всего ошибочно): F(x, y) = 2 * I(x, y) - 1/9 I(x, y) = 17/9 * I(x, y), где F(x, y) - яркость отфильтрованного пикселя, а I(x, y) - яркость исходного пикселя с координатами (x, y). Что означает обычное повышение яркости изображения, при этом без учета соседних пикселей (так как их множители равны 0).

Объясните, пожалуйста, как данный фильтр может повышать четкость изображения?

Сергей Кротов
Сергей Кротов
Россия
Дмитрий Донсков
Дмитрий Донсков
Россия, Москва, Московский Авиационный Институт