Опубликован: 22.12.2005 | Доступ: свободный | Студентов: 16814 / 518 | Оценка: 4.18 / 3.71 | Длительность: 16:16:00
ISBN: 978-5-9556-0109-0
Лекция 14:

Устройство интерпретатора языка Python

< Лекция 13 || Лекция 14: 12345678

Оптимизация

Основная реализация языка Python пока что не имеет оптимизирующего компилятора, поэтому разговор об оптимизации касается только оптимизации кода самим программистом. В любом языке программирования имеются свои характерные приемы оптимизации кода. Оптимизация (улучшение) кода может происходить в двух (зачастую конкурирующих) направлениях: скорость и занимаемая память. В условиях достатка оперативной памяти приложения обычно оптимизируют по скорости. При оптимизации по времени программы для одноразового вычисления следует иметь в виду, что в общее время решения задачи входит не только выполнение программы, но и время ее написания. Не стоит тратить усилия на оптимизацию программы, если она будет использоваться очень редко.

Следует учитывать, что программа, реализующая некоторый алгоритм, не может быть оптимизирована до бесконечно малого времени вычисления: используемый алгоритм имеет определенную временную сложность и программу, основанную на слишком сложном алгоритме, существенно оптимизировать не удастся. Можно попытаться сменить алгоритм (хотя многие задачи этого сделать не позволяют) или ослабить требования к решениям. Иногда помогает упрощение алгоритма. К сожалению, оптимизация кода, как и программирование - задача неформальная, поэтому умение оптимизировать код приходит с опытом.

Если скорость работы программы при большой длине данных не устраивает, следует поискать более эффективный алгоритм. Если же более эффективный алгоритм практически нецелесообразен, можно попытаться провести оптимизацию кода.

Собственно, в данном примере для модуля timeit уже показан практический способ нахождения оптимального кода. Стоит также отметить, что с помощью профайлера нужно определить места кода, отнимающие наибольшую часть времени. Обычно это действия, выполняемые в самом вложенном цикле. Можно попытаться вынести из цикла все, что можно вычислить в более внешнем цикле или вообще вне цикла.

В языке Python вызов функции является относительно дорогостоящей операцией, поэтому на критичных по скорости участках кода следует избегать вызова большого числа функций.

В некоторых случаях работу программы на Python можно ускорить в несколько раз с помощью специального оптимизатора (он не входит в стандартную поставку Python, но свободно распространяется): psyco. Для ускорения программы достаточно добавить следующие строки в начале главного модуля программы:

import psyco
                psyco.full()

Правда, некоторые функции не поддаются "компиляции" с помощью psyco. В этих случаях будут выданы предупреждения. Посмотрите документацию по psyco с тем, чтобы узнать ограничения в его использовании и способы их преодоления.

Еще одним вариантом ускорения работы приложения является переписывание критических участков алгоритма на языках более низкого уровня (С/С++) и использование модулей расширения из Python. Однако эта крайняя мера обычно не требуется или модули для задач, требующих большей эффективности, уже написаны. Например, для работы с растровыми изображениями имеется прекрасная библиотека модулей PIL (Python Imaging Library). Численные расчеты можно выполнять с помощью пакета Numeric и т.д.

Pychecker

Одним из наиболее интересных инструментов для анализа исходного кода Python программы является Pychecker. Как и lint для языка C, Pychecker позволяет выявлять слабости в исходном коде на языке Python. Можно рассмотреть следующий пример с использованием Pychecker:

import re, string
            import re
            a = "a b c"

            def test(x, y):
              from string import split
              a = "x y z"
              print split(a) + x

            test(['d'], 'e')

Pychecker выдаст следующие предупреждения:

badcode.py:1: Imported module (string) not used
                badcode.py:2: Imported module (re) not used
                badcode.py:2: Module (re) re-imported
                badcode.py:5: Parameter (y) not used
                badcode.py:6: Using import and from ... import for (string)
                badcode.py:7: Local variable (a) shadows global defined on line 3
                badcode.py:8: Local variable (a) shadows global defined on line 3

В первой строке импортирован модуль, который далее не применяется, то же самое с модулем re. Кроме того, модуль re импортирован повторно. Другие проблемы с кодом: параметр y не использован; модуль string применен как в операторе import, так и во from-import ; локальная переменная a затеняет глобальную, которая определена в третьей строке.

Можно переписать этот пример так, чтобы Pychecker выдавал меньше предупреждений:

import string
                a = "a b c"

                def test(x, y):
                  a1 = "x y z"
                  print string.split(a1) + x

                test(['d'], 'e')

Теперь имеется лишь одно предупреждение:

goodcode.py:4: Parameter (y) not used

Такое тоже бывает. Программист должен лишь убедиться, что он не сделал ошибки.

< Лекция 13 || Лекция 14: 12345678
Андрей Егоров
Андрей Егоров

def bin(n):

"""Цифры двоичного представления натурального числа """

if n == 0:

   return []

n, d = divmod(n, 2)

return bin(n) + [d]

print bin(69)

Что значит здесь return[] ? Возвращает список? Непонятно какой список? Откуда он? 

 

 

Асмик Гаряка
Асмик Гаряка

Почему при вычислении рейтинга не учитывается уровень, как описано? Для всех курсов У=1, хотя для Специалист должно быть 2.

Максим Иванов
Максим Иванов
Украина, Киев
Сергей Булгаков
Сергей Булгаков
Россия