Московский государственный технологический университет «Станкин»
Опубликован: 18.05.2005 | Доступ: свободный | Студентов: 4095 / 505 | Оценка: 3.93 / 3.84 | Длительность: 11:45:00
ISBN: 978-5-9556-0024-6
Специальности: Программист
Лекция 3:

Методы поиска решений

< Лекция 2 || Лекция 3: 12345 || Лекция 4 >

Алгоритмы эвристического поиска

В рассмотренных примерах поиска решений число состояний невелико, поэтому перебор всех возможных состояний не вызвал затруднений. Однако при значительном числе состояний время поиска возрастает экспоненциально, и в этом случае могут помочь алгоритмы эвристического поиска, которые обладают высокой вероятностью правильного выбора решения. Рассмотрим некоторые из этих алгоритмов.

Алгоритм наискорейшего спуска по дереву решений

Пример построения более узкого дерева рассмотрим на примере задачи о коммивояжере. Торговец должен побывать в каждом из 5 городов, обозначенных на карте ( рис. 3.3).


Рис. 3.3.

Задача состоит в том, чтобы, начиная с города А, найти минимальный путь, проходящий через все остальные города только один раз и приводящий обратно в А. Идея метода исключительно проста - из каждого города идем в ближайший, где мы еще не были. Решение задачи показано на рис. 3.4.


Рис. 3.4.

Такой алгоритм поиска решения получил название алгоритма наискорейшего спуска (в некоторых случаях - наискорейшего подъема).

Алгоритм оценочных (штрафных) функций

Умело подобранные оценочные функции (в некоторых источниках - штрафные функции) могут значительно сократить полный перебор и привести к решению достаточно быстро в сложных задачах. В нашей задаче о людоедах и миссионерах в качестве самой простой целевой функции при выборе очередного состояния можно взять число людоедов и миссионеров, находящихся "не на месте" по сравнению с их расположением в описании целевого состояния. Например, значение этой функции f=x+y для исходного состояния f0=6, а значение для целевого состояния f1=0.

Эвристические процедуры поиска на графе стремятся к тому, чтобы минимизировать некоторую комбинацию стоимости пути к цели и стоимости поиска. Для задачи о людоедах введем оценочную функцию:

f(n) = d(n) + w(n)

где d(n) - глубина вершины n на дереве поиска и w(n) - число находящихся не на нужном месте миссионеров и людоедов. Эвристика заключается в выборе минимального значения f(n). Определяющим в эвристических процедурах является выбор оценочной функции.

Рассмотрим вопрос о сравнительных характеристиках оценочных целевых функций на примере функций для игры в "8" ("пятнашки"). Игра в "8" заключается в нахождении минимального числа перестановок при переходе из исходного состояния в конечное (терминальное, целевое).

2 8 3
1 6 4
7 * 5

1 2 3
8 * 4
7 6 5

Рассмотрим две оценочные функции:

h1(n) & = Q(n)
h2(n) & = P(n) + 3S(n),

где Q(n) - число фишек не на месте; P(n) - сумма расстояний каждой фишки от места в ее целевой вершине; S(n) - учет последовательности нецентральных фишек (штраф +2 если за фишкой стоит не та, которая должна быть в правильной последовательности; штраф +1 за фишку в центре; штраф 0 в остальных случаях).

Сравнение этих оценочных функций приведено в таблица 3.1.

Таблица 3.1. Сравнение оценочных функций
Оценочная функция h Стоимость (длина) пути L Число вершин, открытых при нахождении пути N Трудоемкость вычислений, необходимых для подсчета h S Примечания
h1 S0
S1
5
>18
13
100-8!(=40320)
8
Поиск в ширину
h2 S0
S1
5
18
11
43
8*2+8+1+1
Поиск в глубину

На основе сравнения этих двух оценочных функций можно сделать выводы.

  • Основу алгоритма поиска составляет выбор пути с минимальной оценочной функцией.
  • Поиск в ширину, который дает функция h1, гарантирует, что какой-либо путь к цели будет найден. При поиске в ширину вершины раскрываются в том же порядке, в котором они порождаются.
  • Поиск в глубину управляется эвристической компонентой 3S(n) в функции h2 и при удачном выборе оценочной функции позволяет найти решение по кратчайшему пути (по минимальному числу раскрываемых вершин). Поиск в глубину тем и характеризуется, что в нем первой раскрывается та вершина, которая была построена самой последней.
  • Эффективность поиска возрастает, если при небольших глубинах он направляется в основном в глубь эвристической компонентой, а при возрастании глубины он больше похож на поиск вширь, чтобы гарантировать, что какой-либо путь к цели будет найден. Эффективность поиска можно определить как E=K/L*N*S, где K и S (трудоемкость) - зависят от оценочной функции, L - длина пути, N - число вершин, открытых при нахождении пути. Если договориться, что для оптимального пути E=1, то K=L0*N0*S0.
< Лекция 2 || Лекция 3: 12345 || Лекция 4 >
Дмитрий Черепанов
Дмитрий Черепанов

Неоднократно находил ошибки в тестах, особенно в экзаменационных вопросах, когда правильно данный ответ на вопрос определялся в итоге как не правильно отвеченный... Из-за этого сильно страдает конечный бал! Да еще в заблуждение студентов вводит! Они-то думают, что это они виноваты!!! Но они тут не причем! Я много раз проверял ответы на некоторые такие "ошибочные" вопросы по нескольким источникам - результат везде одинаковый! Но ИНТУИТ выдавал ошибку... Как это понимать?

Из-за подобных недоразумений приходиться часами перерешивать экзамен на отличную оценку...!!!

Исправьте, пожалуйста, такие "ошибки"...

Анжелика Шлома
Анжелика Шлома

Огромная просьба сделать проще тесты, это просто ужас какой-то! Слишком сложно! 

Анатолий Федоров
Анатолий Федоров
Россия, Москва, Московский государственный университет им. М. В. Ломоносова, 1989
Оксана Пагина
Оксана Пагина
Россия, Москва