Спонсор: Microsoft
Опубликован: 23.07.2006 | Доступ: свободный | Студентов: 1399 / 200 | Оценка: 4.28 / 4.17 | Длительность: 21:37:00
Специальности: Системный архитектор
Лекция 10:

Управление памятью и сборка мусора

Отслеживание свободной памяти с помощью подсчета ссылок

Самый простой способ отслеживания свободной памяти заключается в приписывании каждому объекту в памяти специального счетчика ссылок, показывающего количество "живых" переменных, использующих данный объект. При первичном выделении памяти в программе счетчику присваивается значение, равное единице; при создании новых указателей на данный фрагмент памяти, значение счетчика увеличивается на единицу. Если какая-то из переменных, указывающих на данный фрагмент памяти, перестает существовать, значение счетчика ссылок уменьшается на единицу. При достижении счетчиком нуля фрагмент памяти считается более не используемым и может быть утилизирован. Отметим также, что в эту схему легко вписывается и явное управление памятью: оператор free приводит к простому уменьшению счетчика ссылок на единицу.

Этот метод прост, понятен и легко реализуется, но, к сожалению, у этого метода есть серьезные недостатки. Во-первых, приведенный выше алгоритм в некоторых случаях не справляется с определением свободной памяти. Например, для циклического списка уничтожение внешнего указателя на эту структуру делает ее мусором, и в то же время счетчики ссылок циклического списка не становятся равными нулю, т.к. элементы списка указывают друг на друга.

Во-вторых, использование механизма счетчиков ссылок связано со значительной потерей эффективности во время исполнения, так как при каждом присваивании в программе необходимо производить соответствующие арифметические операции. Все эти действия могут оказаться совершенно бесполезными, если программе хватит исходного объема памяти, а это противоречит одному из принципов трансляции, согласно которому программы не должны терять в производительности из-за языковых или компиляторных механизмов, которыми они не пользуются.

Из-за этих проблем механизм счетчиков ссылок не получил широкого распространения. Сегодня он используется только в редких случаях и обычно для крупных объектов, т.к. для них дополнительные затраты памяти не так заметны, а проблема цикличности неактуальна (см., например, счетчики ссылок COM-объектов на платформе Windows).

Отслеживание свободной памяти с помощью разметки

Другим методом отслеживания свободной памяти является механизм разметки памяти . При этом подходе все действия по поиску неиспользуемых переменных откладываются до возникновения недостатка памяти, т.е. до того момента, когда программа требует выделить фрагмент слишком большого размера. В этот момент стартует процесс сборки мусора, начинающийся именно с разметки памяти.

Разметка памяти начинается с обнаружения всех заведомо живых элементов программы. К таким причисляются все объекты за пределами кучи (на стеке, в регистрах процессора и т.д.), а также все объекты в куче, на которые они указывают. Все эти элементы помечаются как используемые. Затем мы перебираем все используемые элементы и помечаем все прочие объекты, на которые они ссылаются. Этот процесс повторяется рекурсивно до тех пор, пока мы не перестаем находить новые используемые элементы.

Следующий просмотр сборки мусора утилизирует все элементы, не помеченные как живые, а также уплотняет все живые элементы, сдвигая их в начало кучи. Очевидно, что затем сборщику мусора придется поменять все значения указателей, используемых в программе; в связи с этим на время сборки мусора все остальные процессы приостанавливаются.

В отличие от счетчиков ссылок, механизм разметки памяти не приводит к замедлению программ, не использующих сборку мусора. Но если потребность в сборке мусора все-таки возникает, то скорее всего, все процессы будут заморожены на некоторое время, которое, скорее всего, будет заметно даже пользователю.

Некоторые свойства сборки мусора

Сборка мусора обладает рядом интересных свойств. Начнем с того, что реализация сборки мусора всегда нетривиальна, так как к ней одновременно предъявляются требования эффективности (иначе процесс сборки мусора будет заметно тормозить исполнение программы) и использования минимально возможного объема памяти (так как сам факт вызова сборки мусора уже означает недостаток памяти). Прямолинейный обход всех достижимых элементов потребует специальной дополнительной памяти под стек значений, что нежелатально, так как эта память будет потеряна для обычных приложений.

Для решения этой проблемы Шорром и Уэйтом еще в 1968 году был предложен алгоритм с обращением указателей : во время маркировки каждого следующего элемента мы будем обращать указатель на него, а при достижении последнего достижимого элемента вернемся по списку в обратном направлении, опять-таки обращая указатели. При такой схеме обхода достаточно всего двух переменных для хранения рабочих указателей и одного дополнительного поля в каждом обрабатываемом элементе (для хранения отметки, обработан этот элемент или нет). Однако этот алгоритм работает заметно медленней. Современные методы маркировки обычно используют какое-то сочетание приведенных выше методов. Более подробно эта тема освещена в книге Д. Кнута "Искусство программирования", том 1, раздел 2.3.5 "Списки и сборка мусора".

Другая интересная особенность сборки мусора заключается в том, что затраты на ее исполнение обратно пропорциональны объему высвобожденной в результате памяти. Это связано с тем, что основные затраты во время сборки мусора приходятся именно на фазу маркировки и, следовательно, чем больше активных элементов в куче, тем процесс дороже. В предельных случаях - когда в результате сборки мусора освобождается совсем мало памяти - программа практически прекращает полезную деятельность, так как для продолжения работы ей снова и снова приходится прибегать к сборке мусора, но скорее всего, никакого улучшени при этом не происходит (в таких случаях говорят, что программа "жужжит"). По этой причине многие алгоритмы сборки мусора ставят для себя специальную нижнюю границу: если алгоритму не удалось освободить больше некоторого заранее заданного объема памяти, то программа тут же завершается.

Оксана Пагина
Оксана Пагина
Россия, Москва
Александр Королёв
Александр Королёв
Россия