Опубликован: 01.03.2007 | Доступ: свободный | Студентов: 1370 / 117 | Оценка: 4.58 / 4.39 | Длительность: 20:15:00
Специальности: Программист
Лекция 4:

Нейросетевые информационные модели сложных инженерных систем

Прикладная нейросетевая модель для прямой задачи

Для выбора эффективной нейросетевой модели для (корректно поставленной) прямой задачи была изучена зависимость ошибки обучения и обобщения от объема используемых при обучении данных и числа свободных весовых параметров в нейронной сети.

Области на  плоскости "температура пламени" - "длительность пожара", в которых максимальная  температура внутри контейнера превышает значения 200, 500 и 800 градусов Цельсия.

Рис. 4.9. Области на плоскости "температура пламени" - "длительность пожара", в которых максимальная температура внутри контейнера превышает значения 200, 500 и 800 градусов Цельсия.

Для приложений требуется компактная и быстрая нейросетевая модель, легко обучаемая и имеющая невысокую ошибку обобщения. Данные требования в некоторой мере противоречивы, поэтому был суммирован опыт большого числа компьютерных экспериментов. Были обнаружены следующие особенности:

  • Степень обобщения улучшается лишь на 50-80% при росте объема базы обучающих данных (и соответственно, затрат на обучение!) в 3-4 раза. Следовательно, можно избежать больших объемов данных.
  • Использование нейронных сетей с число свободных параметров, близким к числу записей в базе данных приводит к ошибке обобщения, в 10 раз большей, чем ошибка обучения. В этом случае предсказательные возможности системы не велики.
  • Подходящая нейронная сеть для прямой задачи характеризуется 10-15 нейронами на скрытом слое с масштаба 100 синаптическими связями, обученная на базе данных из 300-500 записей, она показывает ошибку обучения 2-3% при ошибке обобщения до 5%.

На основе выбранной нейросетевой модели было проведено обучение нейросети и исследован ряд информационных запросов к ней.

Первая серия запросов была выполнена для определения области температур и длительностей пожара, при которых содержимое контейнера не перегревается. Рассматривались пожары, происходящие в непосредственной близости к контейнеру и имеющие диаметр до 15 м. Изолинии температур внутри контейнера показаны на рис.4.9. Расчеты соответствуют трем различным значениям нагрева содержимого 200, 500 и 800oC. Данные результаты в применении к конкретным образцам контейнеров могут составить основу технических требований к противопожарным службам. Так, например, кривая 200oC показывает параметры, при которых срабатывают типичные температурные датчики. Если критическим для эксплуатации оказывается режим превышения 500oC при температуре пламени 800oC, то, как следует из рис. 4.9, контейнер способен выдерживать такую нагрузку в течение 22 мин.

Зависимость длины промежутка времени (в минутах), в течении которого температура внутри контейнера превышала критический уровень, от расстояния до эпицентра пожара (в метрах) для двух значений диаметра пламени (15 и 20 м).

Рис. 4.10. Зависимость длины промежутка времени (в минутах), в течении которого температура внутри контейнера превышала критический уровень, от расстояния до эпицентра пожара (в метрах) для двух значений диаметра пламени (15 и 20 м).

Вторая рассмотренная задача связана с изучением зависимости тепловых условий внутри системы от расстояния до эпицентра пожара. На рис. 4.10 представлена зависимость длительности закритического нагрева (в минутах) от расстояния до области пожара (в метрах). Длительность пожара составляла 1 час. Интересно отметить, что наблюдается некоторое промежуточное значения расстояния до пожара, при котором теплопередача к контейнеру максимальна15Наличие конечного расстояния, при котором теплопередача максимальна, подтверждается простыми геометрическими соотношениями для однородно изотропно излучающего источника конечных размеров. .

На основе данной модели может быть исследовано множество других практических вопросов. Поскольку при анализе запросов нейронная сеть работает только в режиме прямого ненагруженного функционирования, время выполнения запросов минимально.

Владимир Скарин
Владимир Скарин
Австралия
Сергей Смирнов
Сергей Смирнов
Россия, Нижний Новгород, ННГАСУ, 2007