Опубликован: 01.03.2007 | Доступ: свободный | Студентов: 1372 / 117 | Оценка: 4.58 / 4.39 | Длительность: 20:15:00
Специальности: Программист
Лекция 4:

Нейросетевые информационные модели сложных инженерных систем

Аннотация: В данной лекции обсуждаются нейросетевые методы построения моделей сложных систем, основанные на экспериментальных данных. Подробно рассмотрены постановки типовых задач информационного моделирования. Изложение сопровождается модельными иллюстрациями и примерами реальных практических применений.
Ключевые слова: искусственные нейронные сети, компонент, терминал, свойства модели, порт, графика, структура системы, класс, базисные функции, значимость, цель моделирования, процессорный элемент, самоорганизация, нейрон Кохонена, гибридная архитектура, слой Кохонена, выходной нейрон, сеть встречного распространения, многослойная модель, разделение области, линейная разделимость, Гипербола, технические ограничения, внутренние параметры, невязка, ошибка обучения, качество данных, запрос, поиск, переменные состояния, функция, вектор, входной, компактное множество, регуляризация, решение обратной задачи, обучающая выборка, отображение, нейросетевой алгоритм, целый, алгоритм, разбиение, многозначная функция, евклидово расстояние, величина риска, метод обратного распространения ошибки, регулярная задача, обучение нейронной сети, системная модель, частичная корректность, нейросеть, автор

Сложные системы

Лаборатория Искусственных Нейронных Сетей, Российский Федеральный Ядерный Центр - Всероссийский НИИ Технической Физики

С.А. Терехов

Рассмотрим систему, состоящую из некоторого числа компонент. Для определенности будем иметь в виду, скажем, терминал крупного океанского порта, обслуживающий разгрузку судов портовыми кранами, и отправку грузов автомобильным и железнодорожным транспортом. Нашей конечной целью будет построение модели системы, описывающей ее поведение, и обладающей предсказательными свойствами. Модель способна во многих приложениях заменить собой исследуемую систему.

Каждая из компонент системы имеет свои свойства и характер поведения в зависимости от собственного состояния и внешних условий. Если все возможные проявления системы сводятся к сумме проявлений ее компонент, то такая система является простой, несмотря на то, что число ее компонент может быть велико. Для описания простых систем традиционно применяются методы анализа, состоящие в последовательном расчленении системы на компоненты и построении моделей все более простых элементов. Таковым в своей основе является метод математического моделирования [4.1], в котором модели описываются в форме уравнений, а предсказание поведения системы основывается на их решении.

Современные технические системы (например, упомянутый выше порт, инженерные сооружения, приборные комплексы, транспортные средства и др.) приближаются к такому уровню сложности, когда их наблюдаемое поведение и свойства не сводятся к простой сумме свойств отдельных компонент. При объединении компонент в систему возникают качественно новые свойства, которые не могут быть установлены посредством анализа свойств компонент.

В случае терминала порта небольшие отклонения в производительности работы кранов, малые изменения или сбои графика движения железнодорожных составов, отклонения в степени загрузки и в графике прибытия судов могут вызвать качественно новый режим поведения порта, как системы, а именно затор. Образование затора вызывает обратное воздействие на режимы работы компонент, что может привести к серьезным авариям и т.д. Состояние затора не может быть в полной мере получено на основе отдельного анализа, например, свойств одного крана. Однако в рамках системы обычный режим работы этого крана может приводить к состоянию затора.

Такие системы, в которых при вычленении компонент могут быть потеряны принципиальные свойства, а при добавлении компонент возникают качественно новые свойства, будем называть сложными. Модель сложной системы, основанная на принципах анализа, будет неустранимо неадекватной изучаемой системе, поскольку при разбиении системы на составляющие ее компоненты теряются ее качественные особенности.

Принципы информационного кибернетического моделирования

Возможным выходом из положения является построение модели на основе синтеза компонент. Синтетические модели являются практически единственной альтернативой в социологии, долгосрочных прогнозах погоды, в макроэкономике, медицине. В последнее время синтетические информационные модели широко используются и при изучении технических и инженерных систем. В ряде приложений информационные и математические компоненты могут составлять единую модель (например, внешние условия описываются решениями уравнений математической физики, а отклик системы - информационной моделью).

Основным принципом информационного моделирования является принцип " черного ящика ". В противоположность аналитическому подходу, при котором моделируется внутренняя структура системы, в синтетическом методе "черного ящика" моделируется внешнее функционирование системы. С точки зрения пользователя модели структура системы спрятана в черном ящике, который имитирует поведенческие особенности системы.

Кибернетический принцип "черного ящика" был предложен [4.2] в рамках теории идентификации систем, в которой для построения модели системы предлагается широкий параметрический класс базисных функций или уравнений, а сама модель синтезируется путем выбора параметров из условия наилучшего, при заданной функции ценности, соответствия решений уравнений поведению системы. При этом структура системы никак не отражается в структуре уравнений модели.

Функционирование системы в рамках синтетической модели описывается чисто информационно, на основе данных экспериментов или наблюдений над реальной системой. Как правило, информационные модели проигрывают формальным математическим моделям и экспертным системам1Информационные модели, основанные на логически прозрачных нейронных сетях, предложенные в [4.4], в некоторой степени отражают причинно-следственные взаимоотношения между параметрами модели по степени "объяснимости" выдаваемых результатов, однако отсутствие ограничений на сложность моделируемых систем определяет их важную практическую значимость.

Типы информационных моделей

Можно выделить несколько типов2Границы между типами моделей являются весьма условными информационных моделей, отличающихся по характеру запросов к ним. Перечислим лишь некоторые из них:

  • Моделирование отклика системы на внешнее воздействие
  • Классификация внутренних состояний системы
  • Прогноз динамики изменения системы
  • Оценка полноты описания системы и сравнительная информационная значимость параметров системы
  • Оптимизация параметров системы по отношению к заданной функции ценности
  • Адаптивное управление системой

В этом разделе изложение будет основываться на моделях первого из указанных типов.

Пусть X - вектор, компоненты которого соответствуют количественным свойствам системы, X' - вектор количественных свойств внешних воздействий. Отклик системы может быть описан некоторой (неизвестной) вектор-функцией F: Y = F(X,X'), где Y - вектор отклика. Задачей моделирования является идентификация системы, состоящая в нахождении функционального отношения, алгоритма или системы правил в общей форме Z=G(X,X'), ассоциирующей каждую пару векторов (X, X') с вектором Z таким образом, что Z и Y близки в некоторой метрике, отражающей цели моделирования. Отношение Z=G(X,X'), воспроизводящее в указанном смысле функционирование системы F, будем называть информационной моделью системы F.

Владимир Скарин
Владимир Скарин
Австралия
Сергей Смирнов
Сергей Смирнов
Россия, Нижний Новгород, ННГАСУ, 2007