Новосибирский Государственный Университет
Опубликован: 20.08.2013 | Доступ: свободный | Студентов: 861 / 36 | Длительность: 14:11:00
Самостоятельная работа 3:

Машинное обучение

Приведем пример использования класса CvDTree для решения задачи бинарной классификации аналогичной, решаемой в примере для CvSVM.

#include <stdlib.h> 
#include <stdio.h> 
#include <opencv2/core/core.hpp> 
#include <opencv2/ml/ml.hpp> 
 
using namespace cv; 
 
// размерность пространства признаков 
const int d = 2; 
 
// функция истинной зависимости целевого признака 
// от остальных 
int f(Mat sample) 
{ 
  return (int)((sample.at<float>(0) < 0.5f && 
      sample.at<float>(1) < 0.5f) || 
      (sample.at<float>(0) > 0.5f && 
      sample.at<float>(1) > 0.5f)); 
} 
 
int main(int argc, char* argv[]) 
{ 
  // объем генерируемой выборки 
  int n = 2000; 
  // объем обучающей части выборки 
  int n1 = 1000; 
 
  // матрица признаковых описаний объектов 
  Mat samples(n, d, CV_32F); 
  // номера классов (матрица значений целевой переменной) 
  Mat labels(n, 1, CV_32S); 
  // генерируем случайным образом точки 
  // в пространстве признаков 
  randu(samples, 0.0f, 1.0f); 
 
  // вычисляем истинные значения целевой переменной 
  for (int i = 0; i < n; ++i) 
  { 
    labels.at<int>(i) = f(samples.row(i)); 
  } 
 
  // создаем маску прецедентов, которые будут 
  // использоваться для обучения: используем n1 
  // первых прецедентов 
  Mat trainSampleMask(1, n1, CV_32S); 
  for (int i = 0; i < n1; ++i) 
  { 
    trainSampleMask.at<int>(i) = i; 
  } 
 
  // будем обучать дерево решений высоты не больше 10, 
  // после построения которого выполним отсечения 
  // с помощью пятикратного перекресного контроля 
  CvDTreeParams params; 
  params.max_depth = 10; 
  params.min_sample_count = 1; 
  params.cv_folds = 5; 
 
  CvDTree dtree; 
  Mat varIdx(1, d, CV_8U, Scalar(1)); 
  Mat varTypes(1, d + 1, CV_8U, Scalar(CV_VAR_ORDERED)); 
  varTypes.at<uchar>(d) = CV_VAR_CATEGORICAL; 
  dtree.train(samples, CV_ROW_SAMPLE, 
      labels, varIdx, 
      trainSampleMask, varTypes, 
      Mat(), params); 
  dtree.save("model-dtree.yml", "simpleDTreeModel"); 
 
  // вычисляем ошибку на обучающей выборке 
  float trainError = 0.0f; 
  for (int i = 0; i < n1; ++i) 
  { 
    int prediction = 
      (int)(dtree.predict(samples.row(i))->value); 
    trainError += (labels.at<int>(i) != prediction); 
  } 
  trainError /= float(n1); 
 
  // вычисляем ошибку на тестовой выборке 
  float testError = 0.0f; 
  for (int i = 0; i < n - n1; ++i) 
  { 
    int prediction = 
      (int)(dtree.predict(samples.row(n1 + i))->value); 
    testError += 
      (labels.at<int>(n1 + i) != prediction); 
  } 
  testError /= float(n - n1); 
 
  printf("train error = %.4f\ntest error = %.4f\n", 
    trainError, testError); 
 
  return 0; 
}   
    

Иллюстрацией разбиения пространства признаков обученным с помощью данного кода деревом решений служит рис. 8.2.

Точки обучающей выборки и разбиение пространства признаков деревом решений

Рис. 8.2. Точки обучающей выборки и разбиение пространства признаков деревом решений
Александра Максимова
Александра Максимова

При прохождении теста 1 в нем оказались вопросы, который во-первых в 1 лекции не рассматривались, во-вторых, оказалось, что вопрос был рассмаотрен в самостоятельно работе №2. Это значит, что их нужно выполнить перед прохождением теста? или это ошибка?
 

Алена Борисова
Алена Борисова

В лекции по обработке полутоновых изображений (http://www.intuit.ru/studies/courses/10621/1105/lecture/17979?page=2) увидела следующий фильтр:


    \begin{array}{|c|c|c|}
    \hline \\
    0 & 0 & 0 \\
    \hline \\
    0 & 2 & 0 \\
    \hline \\
    0 & 0 & 0 \\
    \hline 
    \end{array} - \frac{1}{9} \begin{array}{|c|c|c|}
    \hline \\
    0 & 0 & 0 \\
    \hline \\
    0 & 1 & 0 \\
    \hline \\
    0 & 0 & 0 \\
    \hline 
    \end{array}

В описании говорится, что он "делает изображение более чётким, потому что, как видно из конструкции фильтра, в однородных частях изображение не изменяется, а в местах изменения яркости это изменение усиливается".

Что вижу я в конструкции фильтра (скорее всего ошибочно): F(x, y) = 2 * I(x, y) - 1/9 I(x, y) = 17/9 * I(x, y), где F(x, y) - яркость отфильтрованного пикселя, а I(x, y) - яркость исходного пикселя с координатами (x, y). Что означает обычное повышение яркости изображения, при этом без учета соседних пикселей (так как их множители равны 0).

Объясните, пожалуйста, как данный фильтр может повышать четкость изображения?