
Intel® Inspector XE 2016
Memory and thread debugger

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

2

• Intro to Intel® Inspector XE

• Analysis workflow

• Memory problem analysis

• Threading problem Analysis

• Integration with debugger

• Automated regression testing and user API

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Intro to Intel® Inspector XE

3

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4

Motivation for The Inspector XE

Memory Errors

• Invalid Accesses
• Memory Leaks
• Uninitialized Memory Accesses

Threading Errors

• Data Races
• Deadlocks
• Cross Stack References

Multi-threading problems
• Hard to reproduce,
• Difficult to debug
• Expensive to fix

Let the tool do it for you

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

5

Intel Inspector XE: Dynamic analysis

Application
process

Inspector XE
Collector

Dynamic binary
instrumentation

Binary Source

Inspector XE scope

Results

Inspector XE GUI

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

How it looks: Visual Studio* Integration

Run analysis from
toolbar

Choose existing project,
no special configuration

Problems found:
memory leaks

Memory allocation site in source code
Call stack

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
7

Standalone GUI: Windows* and Linux*

Open existing project or
create a new one

Choose analysis type

Start analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Analysis workflow

8

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
9

Workflow: Dynamic Analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
10

Workflow: Dynamic Analysis

1

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
11

Workflow: setup project

Specify Application,
arguments and

working directory

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
12

Workflow: Dynamic Analysis

2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
13

1. Select Analysis
Type

2. Click Start

Workflow: select analysis and start

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
14

Workflow: Dynamic Analysis

3

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

15

Workflow: manage results

4/25/2016

Code locations grouped
into Problems to simplify

results management

Powerful filtration
featureDouble click on Problem

to navigate to source

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

16

Workflow: navigate to sources

4/25/2016

Call stacks

Switch to disassembly for more details

Problematic line in source code

All code locations for a problem

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Memory problem analysis

17

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
18

Analyzed as software runs

• Data (workload) -driven execution

• Program can be single or multi-threaded

• Diagnostics reported incrementally as they occur

Includes monitoring of:

• Memory allocation and allocating functions

• Memory deallocation and deallocating functions

• Memory leak reporting

• Inconsistent memory API usage

Analysis scope

• Native code only: C, C++, Fortran

• Code path must be executed to be analyzed

• Workload size affects ability to detect a problem

Memory problem Analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
19

Memory problems

Memory leak
• a block of memory is allocated
• never deallocated
• not reachable (there is no pointer available

to deallocate the block)
• Severity level = (Error)

Memory not deallocated
• a block of memory is allocated
• never deallocated
• still reachable at application exit (there is a

pointer available to deallocate the block).
• Severity level = (Warning)

Memory growth
• a block of memory is allocated
• not deallocated, within a specific time

segment during application execution.
• Severity level = (Warning)

// Memory leak

char *pStr = (char*) malloc(512);
return;

// Memory not deallocated

static char *pStr = malloc(512);
return;

// Memory growth

// Start measuring growth
static char *pStr = malloc(512);
// Stop measuring growth

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
20

Memory problems

Uninitialized memory access
• Read of an uninitialized memory location

Invalid Memory Access
• Read or write instruction references memory

that is logically or physically invalid

Kernel Resource Leak
• Kernel object handle is created but never

closed

GDI Resource Leak
• GDI object is created but never deleted

// Uninitialized Memory Access

void func()
{

int a;
int b = a * 4;

}

// Invalid Memory Access

char *pStr = (char*) malloc(20);
free(pStr);
strcpy(pStr, "my string");

// Kernel Resource Leak

HANDLE hThread = CreateThread(0,
8192, work0, NULL, 0, NULL);

return;

// GDI Resource Leak

HPEN pen = CreatePen(0, 0, 0);
return;

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Incrementally Diagnose Memory Growth

21

Memory usage graph
plots memory growth

Select a cause of
memory growth

As your app is running…

See the code snippet
& call stack

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Threading problem analysis

22

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
23

Analyzed as software runs

• Data (workload) -driven execution

• Program needs to be multi-threaded

• Diagnostics reported incrementally as they occur

Includes monitoring of:

• Thread and Sync APIs used

• Thread execution order

• Scheduler impacts results

• Memory accesses between threads

Analysis scope

• Native code: C, C++, Fortran

• Managed or mixed code: C# (.NET 2.0 to 3.5, .NET 4.0 with limitations)

• Code path must be executed to be analyzed

• Workload size doesn’t affect ability to detect a problem

Threading problem Analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
24

Data race

Write -> Write Data Race

Read -> Write Data Race

CRITICAL_SECTION cs; // Preparation
int *p = malloc(sizeof(int)); // Allocation Site
*p = 0;
InitializeCriticalSection(&cs);

*p = 1; // First Write EnterCriticalSection(&cs);
*p = 2; // Second Write
LeaveCriticalSection(&cs);

Thread #1 Thread #2

int x;
x = *p; // Read

Thread #1

EnterCriticalSection(&cs);
*p = 2; // Write
LeaveCriticalSection(&cs);

Thread #2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
25

Deadlock
CRITICAL_SECTION cs1;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;
InitializeCriticalSection(&cs1); // Allocation Site (cs1)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

EnterCriticalSection(&cs1);
x++;

EnterCriticalSection(&cs2);
y++;
LeaveCriticalSection(&cs2);

LeaveCriticalSection(&cs1);

EnterCriticalSection(&cs2);
y++;

EnterCriticalSection(&cs1);
x++;
LeaveCriticalSection(&cs1);

LeaveCriticalSection(&cs2);

Thread #1 Thread #2

Lock Hierarchy Violation

1. EnterCriticalSection(&cs1); in thread #1

2. EnterCriticalSection(&cs2); in thread #1

3. EnterCriticalSection(&cs2); in thread #2

4. EnterCriticalSection(&cs1); in thread #2

Deadlock

1. EnterCriticalSection(&cs1); in thread #1

2. EnterCriticalSection(&cs2); in thread #2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
26

Cross-thread Stack Access

// A pointer visible for two threads
int *p;
CreateThread(..., thread #1, ...);
CreateThread(..., thread #2, ...);

// Allocated on Thread #1's stack
int q[1024];
p = q;
q[0] = 1;

// Thread #1's stack accessed
*p = 2;

Thread #1 Thread #2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Integration with debugger

27

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
28

Debugger integration

Break into debugger

• Analysis can stop when it detects a
problem

• User is put into a standard
debugging session

Windows*
• Microsoft* Visual Studio Debugger

(vs2012 – vs2015)

Linux*
• gdb

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

29

Debug this problem

Right click on a problem

Inspector XE will set breakpoint,
and launch debug session at the
place of the problem occurrence

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

30

Debug this problem

Problematic code location
with context values

Local variable values

Inspector XE problem context

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

31

Debugger options

Start debugger session for
each problem detected

Inspector XE starts analysis only
after passing a breakpoint

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Regression testing and user API

32

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
33

Data collection from script

• Command line interface (CLI)
for running analysis

• Child process analysis

Reporting CLI

• Exporting results (pack and send)

• Text reports: XML, CSV and plain text

• Detect new problems automatically

Automate Regression Analysis

Create a baseline

Check for
regressions

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Automate Regression Analysis
Command Line Interface

34

inspxe-cl is the command line:

– Windows: C:\Program Files\Intel\Inspector XE \bin[32|64]\inspxe-cl.exe

– Linux: /opt/intel/inspector_xe/bin[32|64]/inspxe-cl

Help:

inspxe-cl –help

Set up command line with GUI

Command examples:

1. inspxe-cl -collect-list

2. inspxe-cl –collect ti2 -- MyApp.exe

3. inspxe-cl –report problems

4/25/2016

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4/25/2016
35

Reporting: regression status

inspxe-cl -report status –r r002mi1

9 problem(s) found
2 Investigated
7 Not investigated

Breakdown by state:
2 Confirmed
4 Not fixed
2 Regression
1 New

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

36

Intel Inspector XE: User APIs

Enable you to

• Control collection, limit analysis scope

• Specify non-standard synchronization primitives

• Specify custom memory allocation primitives

To use user APIs:

• Include ittnotify.h, located at <install_dir>/include

• Insert __itt_* notifications in your code

• Link to the libittnotify.lib file located at <install_dir>/
<lib32|lib64>

• Available for C/C++ and Fortran

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

37

Custom memory allocation
#include <ittnotify.h>

__itt_heap_function my_allocator;
__itt_heap_function my_reallocator;
__itt_heap_function my_freer;

void* my_malloc(size_t s)
{

void* p;

__itt_heap_allocate_begin (my_allocator, s, 0);
p = user_defined_malloc (s);
__itt_heap_allocate_end (my_allocator, &p, s, 0);

return p;
}
... // Do similar markup for custom “realloc” and “free” operations

// Call this init routine before any calls to user defined allocators
void init_itt_calls()
{

my_allocator = __itt_heap_function_create("my_malloc", "mydomain");
my_reallocator = __itt_heap_function_create("my_realloc", "mydomain");
my_freer = __itt_heap_function_create("my_free", "mydomain");

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

38

Collection control APIs
API Description

void __itt_suppress_push(
unsigned int etype)

Stop analyzing for errors on the current thread

void __itt_suppress_pop (
void)

Resume analysis

void __itt_suppress_mark_range (
__itt_suppress_mode_t mode,
unsigned int etype,
void * address,
size_t size);

Suppress or unsuppress error detection for the
specific memory range (object).

void __itt_suppress_clear_range (
__itt_suppress_mode_t mode,
unsigned int etype,
void * address,
size_t size);

Clear the marked memory range

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

39

User-Defined Synchronization APIs
API Description

void __itt_sync_acquired (
void *addr)

Notify Intel Inspector that synchronization
object is acquired by current thread

void __itt_sync_releasing (
void *addr)

Notify that the code is about to release the
specified synchronization object

void __itt_sync_destroy (
void *addr)

Tell the Intel Inspector that the synchronization
object will not be used again, so the Intel
Inspector can dispose of bookkeeping
information associated with this object.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

40

