( lntel) Look Inside”

Intel® Inspector XE 2016

Memory and thread debugger




Agenda

* Intro to Intel® Inspector XE

* Analysis workflow

« Memory problem analysis

* Threading problem Analysis

* Integration with debugger

* Automated regression testing and user API

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Intro to Intel® Inspector XE

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Motivation for The Inspector XE

Memory Errors Threading Errors

Problems
D Problem So

P1 * Mismatched allocation... fin

e
main (7B52)
thread_video (G444)
threadstartex (8550)

P2 @ Invalid memory access  fin
Pz @ Mernory leak fin

 Data Races
 Deadlocks
* Cross Stack References

* Invalid Accesses
 Memory Leaks
* Uninitialized Memory Accesses

Multi-threading problems

* Hard to reproduce, _
. Difficult to debug » Let the tool do it for you
* Expensive to fix

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Intel Inspector XE: Dynamic analysis

Application Binary |€&—— Source
process

|
|
| Inspector XE scope !
|
. . |
! Dynamic binary Inspector XE GUI I
. . I
[ Instrumentation - I
[ | Detect Memory Problems |
1 & Target Analysis Type|| & Collection Log m 1
|
1 Problems 1
|
I Type Sources Modules Severity I
| ; A ] ] i
Mismatched allocati... find_and_fix_memory_errors.... find_and_fix_memory...] Error 1
! Inspector XE v : : : : _ ,
I emory leak find_and_fix_memory_errors.... find_and_fix_memory... " JRUEIRT]
1 CO“_eCtor @ Invalid memory acce... find_and_fix_memory_errors.... find_and_fix_memaory... s :
1 Memory not dealloc... api.cpp; mlock.c; util.cpp; vid... find_and_fix_-memory.. 8 |nzlid me. 1 + |
|
| 41 10of16 b | Al :
: Description  Source Funct.. Module Object.. Offset 1
I Allocatio .. find_and_fix_mem... oper.. find_and_fix_mem.. 1008 - 1
1 161 unsigned int serial=1; find and fix memo I
1 Resu lts 162 unsigned int mboxsize = sizeof (un||(find and fix memo 1
I 163 unsigned int * local mbox = (unsi||(find and fix memo 1
| 164 find and_ fix memo |
165 for (unsigned int i1=0;i<=(mboxsiz||tkk debug.dll!loc 1
! |
! |
! |
|

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



How it looks: Visual Studio* Integration

Dq tachyon_insp_xe - Microsoft Visual Studio (Administrator) 6 X | QuickLaunch (Ctrl+Q) P - O
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE WINDOW  HELP Signin
E - ®~2 W | - - | P Local Windows Debugger ~ | Auto - = |Debug - ; R - | ;

Solution Explorer Wl find_and_fix_threading_errors.cpp r000n2 r0imi2z & X

@l o-aB ™ Detect Memory Problems Run analysis from

Search Solution Explorer (| P = " Analysis Type|| & Collection Log toolbar

Filters Sort~» = %

m Solution tachyon_insp_xe’ (il & 100505
D &  Type Problems found: |, ...

HP1 @ Mismatched all . memOl’y leaks rs.... find_and_fix_memory...

find_and_fix_memary ...

b [%| create_and_use_suppress Y

Severity

4 %] find_and_fix_memory_er
P ;& External Dependenci
P *+ find_and_fix_memory
4 [%| find_and_fix_threading
I ;= External Deoendenci
P *+ find and fiy =

Error 3

Memory leak find_and_fix_memory_errors. ... Warning 1

Invalid memory acce... find_and_fix_memory_errors... find_and_fix_memory... Type
Memory not dealloc... api.cpp; mlock.c; util.cpp; vid... find_and_fix_ memory..Q | validme. 1 =

o

l1of16 I All Code Locations: Memaory leak T

> @ nspect - Choose existing project,

. " . Funct... Module Object.. Offset
> ®itahve no special configuration

_nem... oper.. find_and_fix_mem... 1008

lel unsigned int serial=1; find and fix memo
162 un=zigned int mboxsize = sireof(un||[find and fix memo
163 unsigned int * local mbox = (unsi||find and fix memo
1e4 find and fix memo
6 f (unsigned int i=0;i<= (mboxsi tbb debug. !

165 or {unsiqned int 1=0;i<=(mboxsiEz de dll!loc

Memory allocation site in source code AL SR

(o)

timization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

12101dx3 120188

saiusdoly  xogoojl




Standalone GUI: Windows* and Linux*

ot : Its - Intel Inspector - B -
e Open existing project or P
File View Help
' Create a new one
‘s | B EE P @
B X Welcome | New Inspector Result -
CAT:
w' Intel Inspector XE 2015
EIE My Inspector XE
& roooti2
E r001ti2
ﬂ ro02ti2 _ 2x-20x Detect Leaks
. r003ti2 ﬁu e
: —5] [10x-40x Detect Memory Problems|
L
- |I|][|[||]””
S e B 20x-80x Locate Memaory Problems
Analysis Time Overhead Memaory Overhead
Detect Memory Problems Copy
Choose analySiS type Medium scope memory error analysis ty_pe. Increases the Ioad_on the
system and the time and resources required to perform analysis. Press F1
for mare details.
[ ] Detect uninitialized memaory reads
Revert to previous uninitialized memory algorith Start analysis
Detect memory leaks upon application exit
Detect resource leaks Project Properties...
= 5 Enable interactive memory growth detection "
4/25/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Analysis workflow

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Workflow: Dynamic Analysis

One-time / Optional

Choose /Create Configure
project project

Set up

Run Configure
dynamic dynamic
analysis analysis

: Launch analysis in
o Re'::::l:t‘i(:)n conjunction with debugger to
PP stop at problem(s) of interest

Collect resuit

Choose
problem

4

Investigate result

Interpret Examine
result data/ application
Resolve issue state

4/25/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Workflow: Dynamic Analysis

One-time / Optional

Choose /Create Configure

project project

Set up

Run Configure
dynamic dynamic
analysis analysis

: Launch analysis in
o Re'::::l:t‘i(:)n conjunction with debugger to
PP stop at problem(s) of interest

Collect resuit

Choose
problem

4

Investigate result

Interpret Examine
result data/ application
Resolve issue state

4/25/2016 i@ | 10

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Workflow: setup project

My Inspector XE Results - find_hotspots - Project Properties ?

J Target ] Suppressions ] Binary/Symbol Search ] Source Search ]

Launch Application
Specify and configure your analysis target: an application or a script to execute. Press F1 for more details.

Application: CATemp\find_hotspots.exe ¥ Browse...

Application parameters: v Modify...

[ |Use application directory as working directory:

Working directory: CATemp v Browse...

User-defined envirp==== Ll
Specify Application, vodty.
arguments and
Microsoft* runtime ~ working directory |«

(®) Store result in the project directory: | C\Temp\My Inspector XE Results - find_hotspots

() Store result in (and create link file to) another directory

CATemp\My Inspector XE Results - find_hotspots Browse...

Result location:
CATemp\My Inspector XE Results - find_hotspots\r@@@/{at} b

OK Cancel

4/25/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Workflow: Dynamic Analysis

One-time / Optional

Choose /Create Configure
project project

Set up

Run Configure
dynamic dynamic
analysis analysis

: Launch analysis in
o Re'::::l:t‘i(:)n conjunction with debugger to
PP stop at problem(s) of interest

Collect resuit

Choose
problem

4

Investigate result

Interpret Examine
result data/ application
Resolve issue state

4/25/2016 i@ | 12

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Workflow: select analysis and start

Intel Inspector XE 2015

(| Configure Analysis Type

A Analysis Type

2. Click Start
; 10x-40x Detect Deadlocks
E] 200-80 Detect Deadlocks and Data Races
[
Locate Deadlocks and Data Races il
Tt E m Locate Deadlocks and Data Races
Memory Error Analysis Analysis Time Overhead Memory Overhead
Threading Error Analysis
Custom Analysis Types Locate Deadlocks and Data Races Copy
I Widest scope threading error analysis type. Maximizes the load on the system

: and the time and resources required to perform analysis; however, detects the

1. Select Analy5|s widest set of errors and provides context and maximum detail for those errors.

Type Press F1 for more details.

[ | Terminate on deadlock

Stack frame depth: |16 W

Scope; Mormal W

Remove duplicates

Project Properties...

[ | Use maximum resources

4/25/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Workflow: Dynamic Analysis

One-time / Optional

4/25/2016

Investigate result

Choose /Create
project

Set up

Run
dynamic
analysis

Configure
project

Configure
dynamic
analysis

Rebuild

Collect resuit

Choose
problem

Interpret
result data/

Launch an:l s:)s in
ke conjunction with debugger to
application stop at problem(s) of interest

Resolve issue ! 3

4

Examine
application
state

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Workflow: manage results

Fh?fl Intel Inspector XE 2015

Detect Deadlocks and Data Races
@ Target Analysis Type|| = Collection Log | K RITLTLETY Powerful filtration
Problems Double click on Problem feature
Da @ Type to navigate to source Stal Data race

=P @ Data race find_and_fix_threading_errors.cp.. find_and_fix_threading_errors.exe R New Source
=p2 = Data race winvideo.h find_and_fix_threading_errors.exe ' New find_and_fix_thre...
Data race winvideo.h:270 find_and_fix_threading_errors.exe R New task_scheduler_i..
Data race winvideo.h:270 find_and_fix_threading_errors.exe R New winvideo.h
ata race winvideo.h:201; winvideo.h:270 find_and_fix_threading_errors.exe Module
Code locations grouped -
into Problems to simplify
results management LTI 'main (4960)
Read winvideo.h:270 next_frame find_and_fix_threading_errors.exe thread_video (4672)

268 find and fix threading er ¥ TBB Worker Thread (2848)
269 if(!running) return false; find and fix threading er *TBB Worker Thread (1724)

270 g updates++; // Fast but inaccura )} .
271 if (!threaded) while (loop once (thi TBB Worker Thread (6004)
0t else if(g handles[1]) { Read: winvideo.h:270

ead winvideo.h:270 next_frame find_and_fix_threading_errors.exe

268 find and fix threading er Write: winvideo.h:270
269 if(!running) return false; find and fix threading er

270 g updates++; // Fast but inaccura
271 if (!threaded) while(loop once (thi
272 else if (g handle=[1]) {

4/25/2016

O|

timization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Workflow: navigate to sources

@ e Intel Inspector XE 2015
IWrite - Thread TBB Worker Thread (1724) (find_and_fix_threading_errors.exe!next_frame - winvideo.h:270) g [
|winvideo.h | Disassembly (find_and_fix_threading_errors.exel0x9257) Call Stack |

267 bool video::next frame() <. Bfind_and_fix_threading_errors.exelnext_fral
268 |

269 if{!running) return fals=se;

270 g updates++; // Fast but inaccurate counter. The data race h

271 if (!threaded) while{loop once(this));

272 else if (g handles=[1]) {

273 SetEvent (g handles[1]); Problematic line in source code

274 YIELD TC THREAD();

Call stacks

1
q

A
|Rear.l - Thread TBBE Worker Thread (6004) (find_and_fix_threading_errors.exelnext_frame - winvideo.h:270) g [=]
|winvia -~ h| Disassembly (find_and_fix_threading_errors.exel0x924e) Call Stack |
267 1 “Df :next frame () - Nfind_and_fix_threading_errors.exelnext_fral
All code locations for a problem find_and_fix_threading_errors.exeloperato
265 if (!running) return false;
270 g_updates++; // Fast but inaccur  Gujitch to disassembly for more details
271 if (!threaded) while{loop once(th
272 el=e if{g_handles[l]} {
273 SetEvent (g_handles[1]);
274 YIELD TC THREAD(); -
T4 8
4/25/2016 iﬁ@ | 16

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Memory problem analysis

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Memory problem Analysis

Analyzed as software runs
« Data (workload) -driven execution
* Program can be single or multi-threaded
« Diagnostics reported incrementally as they occur

Includes monitoring of:
 Memory allocation and allocating functions
« Memory deallocation and deallocating functions
« Memory leak reporting
* Inconsistent memory APl usage

Analysis scope
* Native code only: C, C++, Fortran
* Code path must be executed to be analyzed
 Workload size affects ability to detect a problem

4/25/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Memory problems

Memory leak

* ablock of memory is allocated

* never deallocated

* not reachable (there is no pointer available
to deallocate the block)

» Severity level = (Error)

Memory not deallocated

* ablock of memory is allocated

* never deallocated

 still reachable at application exit (there is a
pointer available to deallocate the block).

» Severity level = (Warning)

Memory growth

* ablock of memory is allocated

* not deallocated, within a specific time
segment during application execution.

« Severity level = (Warning)

4/25/2016

// Memory leak

char *pStr = (char*) malloc(512);
return;

// Memory not deallocated

static char *pStr = malloc(512);
return;

// Memory growth

// Start measuring growth
static char *pStr = malloc(512);
// Stop measuring growth

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.




Memory problems

Uninitialized memory access /i TS e Geiey Aseese
* Read of an uninitialized memory location void func()
{
int a;
int b = a * 4;
h
Invalid Memory Access /4 Tl Renery Aeeess
* Read or write instruction references memory | cpar *pstr = (char*) malloc(20);
that is logically or physically invalid free(pStr);
strcpy(pStr, "my string");
Kernel Resource Leak Jf Termel Heselres Ll
« Kernel object handle is created but never HANDLE hThread = CreateThread(e,
closed 8192, work@, NULL, @, NULL);
return;
GDI Resource Leak // GDL Resource Leak
* GDI object is created but never deleted HPEN pen = CreatePen(@, 0, 0);
return;

4/25/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Incrementally Diagnose Memory Growth

As your app Is running...

Memory usage graph
plots memory growth

Select a cause of
memory growth

See the code snippet
& call stack

O|

timization Notice

*‘ MB

162
|» 163

Memory Used by Analysis Tool and Target Application
Last recorded memory usage before collection completed: 211 MB

Fz, Reset Growth Tracking
= Measure Growth

%, Reset Leak Tracking

165 MB

- 110 MB

3.5 II\-"Iin now

Sources Modules
gdiplus.dil:0x47240

Memaory growth  find_and_foo_memory_errors.cppl63

Type
Memory growth

Object Size  State
Fe Mew
™ Mot ficed
F Mot fixed
P Mot fixed
Fr Mot fixed

gdiplus.dil
find_and_fix_memory_errors.exe

Memaory growth  find_and_fix_memory_errors.cppil62  find_and_fix_memory_errors.exe

Memory growth  find_and_fix_memory_errors.cpp:l63  find_and_fix_memory_errors.exe

Memaory growth  find_and_fix_memory_errors.cppil63  find_and_fix_memory_errors.exe

41

Description Source Function Maodule Object 5ize  Offset

Allocation site find_and_fix_memory_errors.cpp:163 operator()  find_and_fix_memory_errors.exe 90108

161 unsigned int serial=l;

unsigned int mboxsize = sizecf (unsigned int)*(max cobjectid() +
unsigned int * local mbox = (unsigned int *) malloc(mboxsize);
164 find and fix memory errors.exsd
185 for (unsigned int i=0;i<=(mboxsize/(sizeof(unsigned int)}):;i++||tbb debug.dll!local wait for §

find and fix memory errors.exsd
find and fix memory errors.exsd
find and fix memory errors.exsd

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Threading problem analysis

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Threading problem Analysis

Analyzed as software runs
« Data (workload) -driven execution
* Program needs to be multi-threaded
« Diagnostics reported incrementally as they occur

Includes monitoring of:
 Thread and Sync APIs used
 Thread execution order
* Scheduler impacts results
« Memory accesses between threads

Analysis scope
* Native code: C, C++, Fortran
* Managed or mixed code: C# (NET 2.0 to 3.5, .NET 4.0 with limitations)
 Code path must be executed to be analyzed
* Workload size doesn't affect ability to detect a problem

4/25/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Data race

CRITICAL_SECTION cs;

// Preparation

int *p = malloc(sizeof(int)); // Allocation Site

*p = 0;

InitializeCriticalSection(&cs);

Write -> Write Data Race

Thread #1

Thread #2

*p = 1; // First Write

EnterCriticalSection(&cs);
*p = 2; // Second Write
LeaveCriticalSection(&cs);

Read -> Write Data Race

4/25/2016

Thread #1

Thread #2

int x;
X = *p; // Read

EnterCriticalSection(&cs);
*p = 25 // Write
LeaveCriticalSection(&cs);

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Deadlock

CRITICAL_SECTION csi;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;

InitializeCriticalSection(&csl1); // Allocation Site (csl)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

Thread #1 Thread #2
EnterCriticalSection(&csl); EnterCriticalSection(&cs2);
X++; y++;
EnterCriticalSection(&cs2); EnterCriticalSection(&csl);
y++; X++;

LeaveCriticalSection(&cs2);
LeaveCriticalSection(&csl);

LeaveCriticalSection(&csl);
LeaveCriticalSection(&cs2);

Deadlock

1. EnterCriticalSection(&cs1); in thread #1

2. EnterCriticalSection(&cs2); in thread #2

4/25/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Lock Hierarchy Violation

EnterCriticalSection(&cs1); in thread #1
EnterCriticalSection(&cs2); in thread #1
EnterCriticalSection(&cs2); in thread #2

H W=

EnterCriticalSection(&cs1); in thread #2



Cross-thread Stack Access

// A pointer visible for two threads
int *p;

CreateThread(..., thread #1, ...);
CreateThread(..., thread #2, ...);

Thread #1 Thread #2
// Allocated on Thread #1's stack // Thread #1's stack accessed
int q[1024]; *p = 2;
P=4;
q[@] = 1)
4/25/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Integration with debugger

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Debugger integration

Break into debugger wy 22 | Detecties
* Analysis can stop when it detects a ;'5] i LScl oy e
problem 20%-80x Locate Memory Problems

Analysis Time Overhead

 Useris putinto a standard

. . Col
debugg|ng session Detect Memory Problems py
Medium scope memory error analysis type. Increases the load on
. * the system and the time and resources required to perform
Windows

analysis. Press F1 for more details.

* Microsoft* Visual Studio Debugger _ _
(V5201 2 —-vs201 5) () Analyze without debugger

Run an analysis and report all detected problems. Use
to view correctness issues without stopping in the
debugger to examine them.

Linux*
- gdb

@ Enable debugger when problem detected
Run an analysis under the debugger and stop every
time a problem is detected. Use to allow investigation
of every problem detected.

m

(") Select analysis start location with debugger

Run target application under the debugger with
analysis disabled until you choose to turn on analysis.
Before starting, set a code breakpoint to stop execution
prior to where you want analysis to begin. Sele...

4/25/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Debug this problem

r010mi2 r008mi2 + X gEnleeele simple_dll.cpp @ X -

™ Detect Memory Problems Intel Inspector XE 2015

@ Target Analysis Type || % Collection Log m

Problems

Type
=P @ Memory leak

Invalid memory access

Right click on a problem

o HILCAT (s & New

= Mat f

MC.Cpp mc.exe
View Source

Edit Source
=3 Copy to Clipboard
Explain Problem

2MOory acCess

g1 1ofl [ Al

Description Source Function Module Object Create Problem Report... D (5556)

Write mc.cpp:150 main mc.exe Debug This Problem

148 mc.exe !l

149 for (unsigned int i = 0;||mc.exe!| Change 5State 4

150 lr:ncal_mbr:nx[i] = 0; mc.exe !l Mergef , .
151 RERNEL3%+ e Inspector XE will set breakpoint,
132 return 0; ntdll.dll!BRtlRed]

and launch debug session at the
place of the problem occurrence

w

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Debug this problem

r010mi2 r000mi2 Disassembly mcepp R X simple_dll.cpp = X
(Global Scope) ~ | @ main() -
{ +
unsigned int max_objectid = 28; “
unsigned int mboxsize = sizeof(unsigned int)*max_objectid;
unsigned int * local mbox = (unsigned int *)malloc(mboxsize); 1
for (unsigned int 1 = @; 1 <= (mboxsize / (sizeof(unsigned int))); 1i++)
() local mbox[i] = @: . .
@ local mboxli]| 4261281277 = Problematlc code location -
4 with context values 3
Autos v I X | |Problem Details v I X
Name Value Type &1 Source @ Intel Inspector € Disable Breakpoint F» Re-enabl
@i 28 unsigned int Invalid memory access at 0x002e5ac0 for thread 5088
> @ local_mbox O0x002e5a50 {0}  unsigned int *
@ local_mbox[i] 4261281277 unsigned int ) Inspector XE prOblem_ context
@ mboxsize 112 unsigned int Descri.. a  Source wnctl.. Module ObjectS.. Offset
EIWrite H mc.cpp:150 main mc.exe
Local variable values 148
145 for (unsigned int 1 = 0; i1 <= (mbox
150 local mbox([i] = 0;
151
UGl | ocals Threads Modules Watch 1 Mol [SRNMEEN Call Stack Breakpoints QOutput

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Debugger options

2x-20x Detect Leaks
@« =
: —_ m Detect Memory Problems|

&
- C 20x-80x Locate Memory Problems "”l]l]l]
Memaory Error Analysis v
Analysis Time Overhead Memary Overhead
Detect Memory Problems Copy

Medium scope memory error analysis type. Increases the load on the system and
the time and resources reguired to perform analysis. Press F1 for more details.

F

Start debugger session for
each problem detected

(_) Analyze without debugger

Run an analysis and report all detected
correctness issues without stoppinz @it

(_) Enable debugger when problem detected

Run an analysis under the debugger and stop every time a problem is
detected. Use to allow investigation of every problem detected.

(®) Select analysis start location with debugger

Run target application under the debugger with analysis disabled until
you choose to turn on analysis. Before starting, set a code breakpoint tc

stop execution priv  |[nspector XE starts analysis only _
after passing a breakpoint

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

@ | >




Regression testing and user API

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Automate Regression Analysis

Data collection from script Create a baseline

« Command line interface (CLI) Collect result /
for running analysis g'g T
* Child process analysis g'g
_ g§ Create
Reporting CLI 4 -
* Exporting results (pack and send)
_ Change source code
* Textreports: XML, CSV and plain text ¥
* Detect new problems automatically Collect

result data

Report
result data

Check for
regressions

Check for regressions

Interpret
result data

4/25/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Automate Regression Analysis

Command Line Interface

inspxe-cl is the command line:
— windows: C:\Program Files\Intel\Inspector XE \bin[32]|64]\inspxe-cl.exe
- Linux: /opt/intel/inspector xe/bin[32]|64]/inspxe-cl

Help:

[#r#| Intel Inspector XE 2016

Configure Analysis Type
/A Analysis Type

inspxe-cl —-help

. . . 2x-20x Detect Leaks
Set up command line with GUI - - ””H”uﬂﬂ
uill

Memory Error Analysis v 20%-80x Locate Memory Problems
Analysis Time Overhead Memory Overhead F
Detect Memory Problems Copy

Medium scope memory errar analysis type. Increases the load on the system

Command Line... ]
C O m m a n d exa m p I_e S: | ;r:alt‘:etlma and resources required to perform analysis. Press F1 for more

[] Detect uninitialized memery reads

1. 1n spxe-c 1 -collect-1list o O e e ey S (RS S ) saiechRioneitics

I Command Line... I

Detect memory leaks upon application exit
—

2. inspxe-cl -collect ti2 -- MyApp.exe

3. inspxe-cl -report problems

4/25/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Reporting: regression status

inspxe-cl -report status -r r002mil

9 problem(s) found

2 Investigated

7/ Not i1nvestigated
Breakdown by state:

2 Cconfirmed

4 Not fixed

2 Regression

1 New

4/25/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Intel Inspector XE: User APIs

Enable you to
* Control collection, limit analysis scope
» Specify non-standard synchronization primitives
* Specify custom memory allocation primitives

To use user APls:
 Include ittnotify.h, located at <install dir>/include
 Insert itt * notificationsin your code

 Linktothe libittnotify.1lib file located at <install dir>/
<1ib32|1ib64>

* Available for C/C++ and Fortran

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.




Custom memory allocation

#include <ittnotify.h>
__itt heap_function my_allocator;
__itt heap_function my_reallocator;

__itt heap_function my_freer;

void* my malloc(size t s)

{
void* p;
__itt_heap_allocate_begin (my _allocator, s, 0);
p = user_defined malloc (s);
__itt_heap_allocate_end (my_allocator, &p, s, 9);
return p;

}

. // Do similar markup for custom “realloc” and “free” operations

// Call this init routine before any calls to user defined allocators
void init_itt_calls()

{
my_allocator = __itt _heap_function_create("my _malloc", "mydomain");
my_reallocator = __itt heap_function_create("my_realloc", "mydomain");
my freer = __itt_heap_function_create("my_ free", "mydomain");

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Collection control APlIs

N =

void __itt_suppress_push( Stop analyzing for errors on the current thread
unsigned int etype)

void __itt_suppress_pop ( Resume analysis
void)

void _itt_suppfess_énark_rznge( Suppress or unsuppress error detection for the
__itt_suppress_mode_t mode, e :
onsigned int etype, specific memory range (object).
void * address,
size t size);

void __itt_suppress_clear_range(  Clear the marked memory range
__itt_suppress_mode_t mode,

unsigned int etype,
void * address,
size_tsize);

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



User-Defined Synchronization APls
APL |Deseripton

void ._it:_sync_acquired( Notify Intel Inspector that synchronization
void *addr) object is acquired by current thread

Vel R ST s | Notify that the code is about to release the
void *adar) specified synchronization object

void __itt_sync_destroy ( Tell the Intel Inspector that the synchronization
void *addr)

object will not be used again, so the Intel
Inspector can dispose of bookkeeping
information associated with this object.

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding

the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.






